cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A082540 Number of ordered quadruples (a,b,c,d) with gcd(a,b,c,d)=1 (1 <= {a,b,c,d} <= n).

Original entry on oeis.org

1, 15, 79, 239, 607, 1199, 2303, 3823, 6223, 9279, 13919, 19183, 27007, 35743, 47519, 60735, 78719, 97103, 122447, 148527, 181839, 216959, 262543, 306863, 365343, 423855, 495855, 569055, 661679, 748527, 862047, 972191, 1104831, 1237247
Offset: 1

Views

Author

Benoit Cloitre, May 11 2003

Keywords

Crossrefs

Column k=4 of A344527.
Cf. A015634.

Programs

  • PARI
    a(n)=sum(k=1,n,moebius(k)*floor(n/k)^4)
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A082540(n):
        if n == 0:
            return 0
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A082540(k1)
            j, k1 = j2, n//j2
        return n*(n**3-1)-c+j # Chai Wah Wu, Mar 29 2021

Formula

a(n) = Sum_{k=1..n} mu(k)*floor(n/k)^4.
a(n) is asymptotic to c*n^4 with c=0.92393....
Lim_{n->infinity} a(n)/n^4 = 1/zeta(4) = A215267 = 90/Pi^4. - Karl-Heinz Hofmann, Apr 11 2021
Lim_{n->infinity} n^4/a(n) = zeta(4) = A013662 = Pi^4/90. - Karl-Heinz Hofmann, Apr 11 2021
a(n) = n^4 - Sum_{k=2..n} a(floor(n/k)). - Seiichi Manyama, Sep 13 2024

A343978 Number of ordered 6-tuples (a,b,c,d,e,f) with gcd(a,b,c,d,e,f)=1 (1<= {a,b,c,d,e,f} <= n).

Original entry on oeis.org

1, 63, 727, 4031, 15559, 45863, 116855, 257983, 526615, 983583, 1755143, 2935231, 4776055, 7407727, 11256623, 16498719, 23859071, 33434063, 46467719, 62949975, 84644439, 111486599, 146142583, 187854119, 240880239, 303814503, 382049919, 473813703, 586746719
Offset: 1

Views

Author

Karl-Heinz Hofmann, May 06 2021

Keywords

References

  • Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54.

Crossrefs

Programs

  • PARI
    a(n)={sum(k=1, n+1, moebius(k)*(n\k)^6)} \\ Andrew Howroyd, May 08 2021
    
  • Python
    from labmath import mobius
    def A343978(n): return sum(mobius(k)*(n//k)**6 for k in range(1, n+1))
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A343978(n):
        if n == 0:
            return 0
        c, j, k1 = 1, 2, n//2
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A343978(k1)
            j, k1 = j2, n//j2
        return n*(n**5-1)-c+j # Chai Wah Wu, May 17 2021

Formula

a(n) = Sum_{k=1..n} mu(k)*floor(n/k)^6.
Lim_{n->infinity} a(n)/n^6 = 1/zeta(6) = A343359 = 945/Pi^6.
a(n) = n^6 - Sum_{k=2..n} a(floor(n/k)). - Seiichi Manyama, Sep 13 2024

Extensions

Edited by N. J. A. Sloane, Jun 13 2021

A082544 Number of ordered quintuples (a,b,c,d,e) with gcd(a,b,c,d,e)=1 (1<= {a,b,c,d,e} <= n).

Original entry on oeis.org

1, 31, 241, 991, 3091, 7501, 16531, 31711, 57781, 96601, 157651, 240031, 362491, 519961, 739201, 1012441, 1383721, 1822711, 2409241, 3091441, 3966301, 4974751, 6257461, 7680781, 9481681, 11474941, 13916191, 16610371, 19911151, 23435191
Offset: 1

Views

Author

Benoit Cloitre, May 11 2003

Keywords

Crossrefs

Column k=5 of A344527.
Cf. A018805 (pairs), A071778 (triples), A082540 (quadruples), A343978.
Cf. A015650.

Programs

  • PARI
    a(n)=sum(k=1,n,moebius(k)*floor(n/k)^5)
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A082544(n):
        if n == 0:
            return 0
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A082544(k1)
            j, k1 = j2, n//j2
        return n*(n**4-1)-c+j # Chai Wah Wu, Mar 29 2021

Formula

a(n) = Sum_{k=1..n} mu(k)*floor(n/k)^5; a(n) is asymptotic to c*n^5 with c=0.9643....
Lim_{n->infinity} a(n)/n^5 = 1/zeta(5) = A343308. - Karl-Heinz Hofmann, Apr 11 2021
Lim_{n->infinity} n^5/a(n) = zeta(5) = A013663. - Karl-Heinz Hofmann, Apr 11 2021
a(n) = n^5 - Sum_{k=2..n} a(floor(n/k)). - Seiichi Manyama, Sep 13 2024

A344479 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1, x_2, ..., x_k <= n} gcd(x_1, x_2, ..., x_k).

Original entry on oeis.org

1, 1, 3, 1, 5, 6, 1, 9, 12, 10, 1, 17, 30, 24, 15, 1, 33, 84, 76, 37, 21, 1, 65, 246, 276, 141, 61, 28, 1, 129, 732, 1060, 649, 267, 80, 36, 1, 257, 2190, 4164, 3165, 1417, 400, 112, 45, 1, 513, 6564, 16516, 15697, 8091, 2528, 624, 145, 55, 1, 1025, 19686, 65796, 78261, 47521, 17128, 4432, 885, 189, 66
Offset: 1

Views

Author

Seiichi Manyama, May 22 2021

Keywords

Examples

			G.f. of column 3: (1/(1 - x)) * Sum_{i>=1} phi(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^3.
Square array begins:
   1,  1,   1,    1,    1,     1, ...
   3,  5,   9,   17,   33,    65, ...
   6, 12,  30,   84,  246,   732, ...
  10, 24,  76,  276, 1060,  4164, ...
  15, 37, 141,  649, 3165, 15697, ...
  21, 61, 267, 1417, 8091, 47521, ...
		

Crossrefs

Columns k=1..5 give A000217, A018806, A344522, A344523, A344524.
T(n,n) gives A344525.

Programs

  • Mathematica
    T[n_, k_] := Sum[EulerPhi[j] * Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 22 2021 *)
  • PARI
    T(n, k) = sum(j=1, n, eulerphi(j)*(n\j)^k);

Formula

G.f. of column k: (1/(1 - x)) * Sum_{i>=1} phi(i) * ( Sum_{j=1..k} A008292(k, j) * x^(i*j) )/(1 - x^i)^k.
T(n,k) = Sum_{j=1..n} phi(j) * floor(n/j)^k.

A177976 Square array T(n,k) read by antidiagonals up. Cumulative column sums of A177975.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 8, 4, 1, 1, 10, 15, 13, 5, 1, 1, 12, 29, 29, 19, 6, 1, 1, 18, 42, 63, 49, 26, 7, 1, 1, 22, 69, 106, 118, 76, 34, 8, 1, 1, 28, 95, 189, 225, 201, 111, 43, 9, 1, 1, 32, 134, 289, 434, 427, 320, 155, 53, 10, 1, 1, 42, 172, 444, 729, 888, 748, 484, 209, 64, 11, 1
Offset: 1

Views

Author

Mats Granvik, May 16 2010

Keywords

Comments

Each row is described by both a binomial expression and a closed form polynomial. The closed form polynomials given in A177977 extends this table to the left. For example the 0th column is A002321 and the -1st column is A092149.
Also number of ordered k-tuples of integers from [ 1..n ] with no global factor. - Seiichi Manyama, Jun 12 2021

Examples

			Table begins:
  1..1...1....1.....1.....1......1......1.......1.......1.......1
  1..2...3....4.....5.....6......7......8.......9......10......11
  1..4...8...13....19....26.....34.....43......53......64......76
  1..6..15...29....49....76....111....155.....209.....274.....351
  1.10..29...63...118...201....320....484.....703.....988....1351
  1.12..42..106...225...427....748...1233....1937....2926....4278
  1.18..69..189...434...888...1671...2948....4939....7930...12285
  1.22..95..289...729..1624...3303...6260...11209...19150...31447
  1.28.134..444..1209..2890...6278..12659...24034...43405...75139
  1.32.172..626..1850..4761..11067..23762...47841...91301..166506
  1.42.237..911..2850..7763..19074..43209...91598..183678..351261
  1.46.287.1203..4059.11829..30911..74129..165737..349426..700699
  1.58.377.1657..5878.18016..49474.124516..291706..643355.1347344
  1.64.452.2130..8044.26117..75676.200313..492185.1135761.2483392
  1.72.552.2766.11020.37599.114199.316228..811416.1952182.4443582
  1.80.652.3462.14566.52311.166747.483340.1295295.3248246.7692894
		

Crossrefs

Programs

  • PARI
    T(n, k) = sum(j=1, n, sumdiv(j, d, moebius(j/d)*binomial(d+k-2, d-1))); \\ Seiichi Manyama, Jun 12 2021
    
  • PARI
    T(n, k) = binomial(n+k-1, k)-sum(j=2, n, T(n\j, k)); \\ Seiichi Manyama, Jun 12 2021

Formula

From Seiichi Manyama, Jun 12 2021: (Start)
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} mu(j) * x^j/(1 - x^j)^k.
T(n,k) = Sum_{j=1..n} Sum_{d|j} mu(j/d) * binomial(d+k-2,d-1).
T(n,k) = binomial(n+k-1,k) - Sum_{j=2..n} T(floor(n/j),k). (End)

A332468 a(n) = Sum_{k=1..n} mu(k) * floor(n/k)^n.

Original entry on oeis.org

1, 3, 25, 239, 3091, 45863, 821227, 16711423, 387138661, 9990174303, 285262663291, 8913906888703, 302861978789371, 11111328334033327, 437889112287422401, 18446462446101903615, 827238009323454485641, 39346257879101283645743, 1978418304199236175597105
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 13 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[MoebiusMu(k)*Floor(n/k)^n:k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 13 2020
    
  • Mathematica
    Table[Sum[MoebiusMu[k] Floor[n/k]^n, {k, 1, n}], {n, 1, 19}]
    b[n_, k_] := b[n, k] = n^k - Sum[b[Floor[n/j], k], {j, 2, n}]; a[n_] := b[n, n]; Table[a[n], {n, 1, 19}]
  • PARI
    a(n)={sum(k=1, n, moebius(k) * floor(n/k)^n)} \\ Andrew Howroyd, Feb 13 2020
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A344527_T(n,k):
        if n == 0:
            return 0
        c, j, k1 = 1, 2, n//2
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A344527_T(k1,k)
            j, k1 = j2, n//j2
        return n*(n**(k-1)-1)-c+j
    def A332468(n): return A344527_T(n,n) # Chai Wah Wu, Nov 02 2023

Formula

a(n) ~ n^n. - Vaclav Kotesovec, May 28 2021
Showing 1-6 of 6 results.