cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A071778 Number of ordered triples (a, b, c) with gcd(a, b, c) = 1 and 1 <= {a, b, c} <= n.

Original entry on oeis.org

1, 7, 25, 55, 115, 181, 307, 439, 637, 841, 1171, 1447, 1915, 2329, 2881, 3433, 4249, 4879, 5905, 6745, 7861, 8911, 10429, 11557, 13297, 14773, 16663, 18355, 20791, 22495, 25285, 27541, 30361, 32905, 36289, 38845, 42841, 46027, 49987, 53395
Offset: 1

Views

Author

Michael Malak (mmalak(AT)alum.mit.edu), Jun 04 2002

Keywords

Crossrefs

Cf. A018805 (ordered pairs), A082540, A082544, A343978, A344522.

Programs

  • Java
    public class Triples { public static void main(String[] argv) { int i, j, k, a, m, n, d; boolean cf; try {a = Integer.parseInt(argv[0]);} catch (Exception e) {a = 10;}
    for (m = 1; m <= a; m++) { n = 0; for (i = 1; i <= m; i++) for (j = 1; j <= m; j++) for (k = 1; k <= m; k++) { cf = false; for (d = 2; d <= m; d++) cf = cf || ((i % d == 0) && (j % d == 0) && (k % d == 0)); if (!cf) n++; } System.out.println(m + ": " + n); } } }
    
  • Maple
    f:=proc(n) local i,j,k,t1,t2,t3; t1:=0; for i from 1 to n do for j from 1 to n do t2:=gcd(i,j); for k from 1 to n do t3:=gcd(t2,k); if t3 = 1 then t1:=t1+1; fi; od: od: od: t1; end;
  • Mathematica
    a[n_] := Sum[MoebiusMu[k]*Quotient[n, k]^3, {k, 1, n}]; Array[a, 40] (* Jean-François Alcover, Apr 14 2014, after Benoit Cloitre *)
  • PARI
    a(n)=sum(k=1,n,moebius(k)*(n\k)^3)
    
  • PARI
    a(n)=my(s); forsquarefree(k=1,n, s+=moebius(k)*(n\k[1])^3); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^3)/(1-x)) \\ Seiichi Manyama, May 22 2021
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A071778(n):
        if n == 0:
            return 0
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A071778(k1)
            j, k1 = j2, n//j2
        return n*(n**2-1)-c+j # Chai Wah Wu, Mar 29 2021

Formula

a(n) = Sum_{k=1..n} mu(k)*floor(n/k)^3. - Benoit Cloitre, May 11 2003
a(n) = n^3 - Sum_{j=2..n} a(floor(n/j)). - Vladeta Jovovic, Nov 30 2004
G.f.: (1/(1 - x)) * Sum_{k >= 1} mu(k) * x^k * (1 + 4*x^k + x^(2*k))/(1 - x^k)^3. - Seiichi Manyama, May 22 2021
a(n) ~ n^3/zeta(3). - Vaclav Kotesovec, Sep 14 2021

A082540 Number of ordered quadruples (a,b,c,d) with gcd(a,b,c,d)=1 (1 <= {a,b,c,d} <= n).

Original entry on oeis.org

1, 15, 79, 239, 607, 1199, 2303, 3823, 6223, 9279, 13919, 19183, 27007, 35743, 47519, 60735, 78719, 97103, 122447, 148527, 181839, 216959, 262543, 306863, 365343, 423855, 495855, 569055, 661679, 748527, 862047, 972191, 1104831, 1237247
Offset: 1

Views

Author

Benoit Cloitre, May 11 2003

Keywords

Crossrefs

Column k=4 of A344527.
Cf. A015634.

Programs

  • PARI
    a(n)=sum(k=1,n,moebius(k)*floor(n/k)^4)
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A082540(n):
        if n == 0:
            return 0
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A082540(k1)
            j, k1 = j2, n//j2
        return n*(n**3-1)-c+j # Chai Wah Wu, Mar 29 2021

Formula

a(n) = Sum_{k=1..n} mu(k)*floor(n/k)^4.
a(n) is asymptotic to c*n^4 with c=0.92393....
Lim_{n->infinity} a(n)/n^4 = 1/zeta(4) = A215267 = 90/Pi^4. - Karl-Heinz Hofmann, Apr 11 2021
Lim_{n->infinity} n^4/a(n) = zeta(4) = A013662 = Pi^4/90. - Karl-Heinz Hofmann, Apr 11 2021
a(n) = n^4 - Sum_{k=2..n} a(floor(n/k)). - Seiichi Manyama, Sep 13 2024

A343978 Number of ordered 6-tuples (a,b,c,d,e,f) with gcd(a,b,c,d,e,f)=1 (1<= {a,b,c,d,e,f} <= n).

Original entry on oeis.org

1, 63, 727, 4031, 15559, 45863, 116855, 257983, 526615, 983583, 1755143, 2935231, 4776055, 7407727, 11256623, 16498719, 23859071, 33434063, 46467719, 62949975, 84644439, 111486599, 146142583, 187854119, 240880239, 303814503, 382049919, 473813703, 586746719
Offset: 1

Views

Author

Karl-Heinz Hofmann, May 06 2021

Keywords

References

  • Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54.

Crossrefs

Programs

  • PARI
    a(n)={sum(k=1, n+1, moebius(k)*(n\k)^6)} \\ Andrew Howroyd, May 08 2021
    
  • Python
    from labmath import mobius
    def A343978(n): return sum(mobius(k)*(n//k)**6 for k in range(1, n+1))
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A343978(n):
        if n == 0:
            return 0
        c, j, k1 = 1, 2, n//2
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A343978(k1)
            j, k1 = j2, n//j2
        return n*(n**5-1)-c+j # Chai Wah Wu, May 17 2021

Formula

a(n) = Sum_{k=1..n} mu(k)*floor(n/k)^6.
Lim_{n->infinity} a(n)/n^6 = 1/zeta(6) = A343359 = 945/Pi^6.
a(n) = n^6 - Sum_{k=2..n} a(floor(n/k)). - Seiichi Manyama, Sep 13 2024

Extensions

Edited by N. J. A. Sloane, Jun 13 2021

A344527 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) is the number of ordered k-tuples (x_1, x_2, ..., x_k) with gcd(x_1, x_2, ..., x_k) = 1 (1 <= {x_1, x_2, ..., x_k} <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 25, 11, 1, 1, 31, 79, 55, 19, 1, 1, 63, 241, 239, 115, 23, 1, 1, 127, 727, 991, 607, 181, 35, 1, 1, 255, 2185, 4031, 3091, 1199, 307, 43, 1, 1, 511, 6559, 16255, 15559, 7501, 2303, 439, 55, 1, 1, 1023, 19681, 65279, 77995, 45863, 16531, 3823, 637, 63, 1
Offset: 1

Views

Author

Seiichi Manyama, May 22 2021

Keywords

Examples

			G.f. of column 3: (1/(1 - x)) * Sum_{i>=1} mu(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^3.
Square array begins:
  1,  1,   1,    1,    1,     1, ...
  1,  3,   7,   15,   31,    63, ...
  1,  7,  25,   79,  241,   727, ...
  1, 11,  55,  239,  991,  4031, ...
  1, 19, 115,  607, 3091, 15559, ...
  1, 23, 181, 1199, 7501, 45863, ...
		

Crossrefs

Columns k=1..6 give A000012, A018805, A071778, A082540, A082544, A343978.
T(n,n) gives A332468.

Programs

  • Mathematica
    T[n_, k_] := Sum[MoebiusMu[j] * Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 22 2021 *)
  • PARI
    T(n, k) = sum(j=1, n, moebius(j)*(n\j)^k);
    
  • PARI
    T(n, k) = n^k-sum(j=2, n, T(n\j, k));
    
  • Python
    from functools import lru_cache
    from itertools import count, islice
    @lru_cache(maxsize=None)
    def A344527_T(n,k):
        if n == 0:
            return 0
        c, j, k1 = 1, 2, n//2
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A344527_T(k1,k)
            j, k1 = j2, n//j2
        return n*(n**(k-1)-1)-c+j
    def A344527_gen(): # generator of terms
        return (A344527_T(k+1, n-k) for n in count(1) for k in range(n))
    A344527_list = list(islice(A344527_gen(),30)) # Chai Wah Wu, Nov 02 2023

Formula

G.f. of column k: (1/(1 - x)) * Sum_{i>=1} mu(i) * ( Sum_{j=1..k} A008292(k, j) * x^(i*j) )/(1 - x^i)^k.
T(n,k) = Sum_{j=1..n} mu(j) * floor(n/j)^k.
T(n,k) = n^k - Sum_{j=2..n} T(floor(n/j),k).

A344524 a(n) = Sum_{1 <= i, j, k, l, m <= n} gcd(i,j,k,l,m).

Original entry on oeis.org

1, 33, 246, 1060, 3165, 8091, 17128, 33936, 60645, 103825, 164886, 259368, 381841, 557595, 784200, 1091056, 1462353, 1968261, 2554810, 3327120, 4230561, 5361463, 6644196, 8302020, 10113445, 12352041, 14873418, 17924356, 21225165, 25341375, 29670556, 34920348, 40625541, 47297365
Offset: 1

Views

Author

Seiichi Manyama, May 22 2021

Keywords

Comments

In general, for m > 2, Sum_{k=1..n} phi(k) * floor(n/k)^m ~ zeta(m-1) * n^m / zeta(m). - Vaclav Kotesovec, May 23 2021

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[EulerPhi[k] * Quotient[n, k]^5, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 22 2021 *)
  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, sum(l=1, n, sum(m=1, n, gcd([i, j, k, l, m]))))));
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(k)*(n\k)^5);
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+26*x^k+66*x^(2*k)+26*x^(3*k)+x^(4*k))/(1-x^k)^5)/(1-x))

Formula

a(n) = Sum_{k=1..n} phi(k) * floor(n/k)^5.
G.f.: (1/(1 - x)) * Sum_{k >= 1} phi(k) * x^k * (1 + 26*x^k + 66*x^(2*k) + 26*x^(3*k) + x^(4*k))/(1 - x^k)^5.
a(n) ~ Pi^4 * n^5 / (90*zeta(5)). - Vaclav Kotesovec, May 23 2021

A343282 Number of ordered 5-tuples (v,w, x, y, z) with gcd(v, w, x, y, z) = 1 and 1 <= {v, w, x, y, z} <= 10^n.

Original entry on oeis.org

1, 96601, 9645718621, 964407482028001, 96438925911789115351, 9643875373658964992585011, 964387358678775616636890654841, 96438734235127451288511508421855851, 9643873406165059293451290072800801506621
Offset: 0

Views

Author

Karl-Heinz Hofmann, Apr 10 2021

Keywords

References

  • Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54.

Crossrefs

Related counts of k-tuples:
triples: A071778, A342935, A342841;
quadruples: A082540, A343527, A343193;
5-tuples: A343282;
6-tuples: A343978, A344038. - N. J. A. Sloane, Jun 13 2021

Programs

  • Python
    from labmath import mobius
    def A343282(n): return sum(mobius(k)*(10**n//k)**5 for k in range(1, 10**n+1))

Formula

Lim_{n->infinity} a(n)/10^(5*n) = 1/zeta(5) = A343308.
a(n) = A082544(10^n). - Chai Wah Wu, Apr 11 2021

Extensions

Edited by N. J. A. Sloane, Jun 13 2021

A344038 Number of ordered 6-tuples (a,b,c,d,e,f) with gcd(a,b,c,d,e,f)=1 (1<= {a,b,c,d,e,f} <= 10^n).

Original entry on oeis.org

1, 983583, 983029267047, 982960635742968103, 982953384128772770413831, 982952672223441253533233827367, 982952600027678075050509511271466303, 982952593055042000417993486008754893529583, 982952592342881094406730790044111038427637071855
Offset: 0

Views

Author

Karl-Heinz Hofmann, May 07 2021

Keywords

Crossrefs

Related counts of k-tuples:
triples: A071778, A342935, A342841;
quadruples: A082540, A343527, A343193;
5-tuples: A343282;
6-tuples: A343978, A344038. - N. J. A. Sloane, Jun 13 2021

Programs

  • PARI
    a(n)={sum(k=1, 10^n+1, moebius(k)*(10^n\k)^6)} \\ Andrew Howroyd, May 08 2021
  • Python
    from labmath import mobius
    def A344038(n): return sum(mobius(k)*(10**n//k)**6 for k in range(1, 10**n+1))
    

Formula

Lim_{n->infinity} a(n)/10^(6*n) = 1/zeta(6) = A343359 = 945/Pi^4.
a(n) = A343978(10^n).

Extensions

Edited by N. J. A. Sloane, Jun 13 2021

A332468 a(n) = Sum_{k=1..n} mu(k) * floor(n/k)^n.

Original entry on oeis.org

1, 3, 25, 239, 3091, 45863, 821227, 16711423, 387138661, 9990174303, 285262663291, 8913906888703, 302861978789371, 11111328334033327, 437889112287422401, 18446462446101903615, 827238009323454485641, 39346257879101283645743, 1978418304199236175597105
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 13 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[MoebiusMu(k)*Floor(n/k)^n:k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 13 2020
    
  • Mathematica
    Table[Sum[MoebiusMu[k] Floor[n/k]^n, {k, 1, n}], {n, 1, 19}]
    b[n_, k_] := b[n, k] = n^k - Sum[b[Floor[n/j], k], {j, 2, n}]; a[n_] := b[n, n]; Table[a[n], {n, 1, 19}]
  • PARI
    a(n)={sum(k=1, n, moebius(k) * floor(n/k)^n)} \\ Andrew Howroyd, Feb 13 2020
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A344527_T(n,k):
        if n == 0:
            return 0
        c, j, k1 = 1, 2, n//2
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A344527_T(k1,k)
            j, k1 = j2, n//j2
        return n*(n**(k-1)-1)-c+j
    def A332468(n): return A344527_T(n,n) # Chai Wah Wu, Nov 02 2023

Formula

a(n) ~ n^n. - Vaclav Kotesovec, May 28 2021

A101467 Number of distinct n-term ratios x_1 : x_2 : ... : x_n where each x_i is in the range [1-10].

Original entry on oeis.org

10, 63, 841, 9279, 96601, 983583, 9919561, 99602559, 998026681, 9990174303, 99950992681, 999755323839, 9998777694361, 99993891685023, 999969468040201, 9999847368997119, 99999236931275641, 999996184915051743, 9999980925350886121, 99999904629080526399
Offset: 1

Views

Author

Su Jianning (sujianning(AT)yahoo.com.cn), Jan 21 2005

Keywords

Comments

Number of elements of {1,...,10}^n with gcd 1. - Robert Israel, Nov 28 2014

Examples

			For n=2: Consider the ratios 1:1, 1:2, ..., 1:10, 2:1, 2:2, ..., 2:10, ..., 10:1, 10:2, ..., 10:10. We get 63 different ratios from the 100 numbers list above after removing duplication. So a(2) = 63, and this is A018805(10).
		

Crossrefs

Cf. A018805 (2 terms), A071778 (3 terms), A082540 (4 terms), A082544 (5 terms).

Programs

  • Maple
    1, seq(10^n - 5^n - 3^n - 2^n + 1, n=2..20); # Robert Israel, Nov 28 2014
  • PARI
    Vec(x*(2700*x^5-5460*x^4+3579*x^3-1028*x^2+147*x-10)/((x-1)*(2*x-1)*(3*x-1)*(5*x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Nov 28 2014

Formula

a(1) = 10; for n>1, a(n) = 10^n - 5^n - 3^n - 2^n + 1.
G.f.: x*(2700*x^5-5460*x^4+3579*x^3-1028*x^2+147*x-10) / ((x-1)*(2*x-1)*(3*x-1)*(5*x-1)*(10*x-1)). - Colin Barker, Nov 28 2014
a(n+4) = -300*a(n)+340*a(n+1)-131*a(n+2)+20*a(n+3)+72 for n >= 2. - Robert Israel, Dec 02 2014
a(n) = 21*a(n-1) - 151*a(n-2) + 471*a(n-3) - 640*a(n-4) + 300*a(n-5) for n > 6. - Chai Wah Wu, Apr 15 2021
Showing 1-9 of 9 results.