A071778
Number of ordered triples (a, b, c) with gcd(a, b, c) = 1 and 1 <= {a, b, c} <= n.
Original entry on oeis.org
1, 7, 25, 55, 115, 181, 307, 439, 637, 841, 1171, 1447, 1915, 2329, 2881, 3433, 4249, 4879, 5905, 6745, 7861, 8911, 10429, 11557, 13297, 14773, 16663, 18355, 20791, 22495, 25285, 27541, 30361, 32905, 36289, 38845, 42841, 46027, 49987, 53395
Offset: 1
Michael Malak (mmalak(AT)alum.mit.edu), Jun 04 2002
-
public class Triples { public static void main(String[] argv) { int i, j, k, a, m, n, d; boolean cf; try {a = Integer.parseInt(argv[0]);} catch (Exception e) {a = 10;}
for (m = 1; m <= a; m++) { n = 0; for (i = 1; i <= m; i++) for (j = 1; j <= m; j++) for (k = 1; k <= m; k++) { cf = false; for (d = 2; d <= m; d++) cf = cf || ((i % d == 0) && (j % d == 0) && (k % d == 0)); if (!cf) n++; } System.out.println(m + ": " + n); } } }
-
f:=proc(n) local i,j,k,t1,t2,t3; t1:=0; for i from 1 to n do for j from 1 to n do t2:=gcd(i,j); for k from 1 to n do t3:=gcd(t2,k); if t3 = 1 then t1:=t1+1; fi; od: od: od: t1; end;
-
a[n_] := Sum[MoebiusMu[k]*Quotient[n, k]^3, {k, 1, n}]; Array[a, 40] (* Jean-François Alcover, Apr 14 2014, after Benoit Cloitre *)
-
a(n)=sum(k=1,n,moebius(k)*(n\k)^3)
-
a(n)=my(s); forsquarefree(k=1,n, s+=moebius(k)*(n\k[1])^3); s \\ Charles R Greathouse IV, Jan 08 2018
-
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^3)/(1-x)) \\ Seiichi Manyama, May 22 2021
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A071778(n):
if n == 0:
return 0
c, j = 1, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A071778(k1)
j, k1 = j2, n//j2
return n*(n**2-1)-c+j # Chai Wah Wu, Mar 29 2021
A082540
Number of ordered quadruples (a,b,c,d) with gcd(a,b,c,d)=1 (1 <= {a,b,c,d} <= n).
Original entry on oeis.org
1, 15, 79, 239, 607, 1199, 2303, 3823, 6223, 9279, 13919, 19183, 27007, 35743, 47519, 60735, 78719, 97103, 122447, 148527, 181839, 216959, 262543, 306863, 365343, 423855, 495855, 569055, 661679, 748527, 862047, 972191, 1104831, 1237247
Offset: 1
-
a(n)=sum(k=1,n,moebius(k)*floor(n/k)^4)
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A082540(n):
if n == 0:
return 0
c, j = 1, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A082540(k1)
j, k1 = j2, n//j2
return n*(n**3-1)-c+j # Chai Wah Wu, Mar 29 2021
A343978
Number of ordered 6-tuples (a,b,c,d,e,f) with gcd(a,b,c,d,e,f)=1 (1<= {a,b,c,d,e,f} <= n).
Original entry on oeis.org
1, 63, 727, 4031, 15559, 45863, 116855, 257983, 526615, 983583, 1755143, 2935231, 4776055, 7407727, 11256623, 16498719, 23859071, 33434063, 46467719, 62949975, 84644439, 111486599, 146142583, 187854119, 240880239, 303814503, 382049919, 473813703, 586746719
Offset: 1
- Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54.
-
a(n)={sum(k=1, n+1, moebius(k)*(n\k)^6)} \\ Andrew Howroyd, May 08 2021
-
from labmath import mobius
def A343978(n): return sum(mobius(k)*(n//k)**6 for k in range(1, n+1))
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A343978(n):
if n == 0:
return 0
c, j, k1 = 1, 2, n//2
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A343978(k1)
j, k1 = j2, n//j2
return n*(n**5-1)-c+j # Chai Wah Wu, May 17 2021
A344527
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) is the number of ordered k-tuples (x_1, x_2, ..., x_k) with gcd(x_1, x_2, ..., x_k) = 1 (1 <= {x_1, x_2, ..., x_k} <= n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 25, 11, 1, 1, 31, 79, 55, 19, 1, 1, 63, 241, 239, 115, 23, 1, 1, 127, 727, 991, 607, 181, 35, 1, 1, 255, 2185, 4031, 3091, 1199, 307, 43, 1, 1, 511, 6559, 16255, 15559, 7501, 2303, 439, 55, 1, 1, 1023, 19681, 65279, 77995, 45863, 16531, 3823, 637, 63, 1
Offset: 1
G.f. of column 3: (1/(1 - x)) * Sum_{i>=1} mu(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^3.
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 7, 15, 31, 63, ...
1, 7, 25, 79, 241, 727, ...
1, 11, 55, 239, 991, 4031, ...
1, 19, 115, 607, 3091, 15559, ...
1, 23, 181, 1199, 7501, 45863, ...
-
T[n_, k_] := Sum[MoebiusMu[j] * Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 22 2021 *)
-
T(n, k) = sum(j=1, n, moebius(j)*(n\j)^k);
-
T(n, k) = n^k-sum(j=2, n, T(n\j, k));
-
from functools import lru_cache
from itertools import count, islice
@lru_cache(maxsize=None)
def A344527_T(n,k):
if n == 0:
return 0
c, j, k1 = 1, 2, n//2
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A344527_T(k1,k)
j, k1 = j2, n//j2
return n*(n**(k-1)-1)-c+j
def A344527_gen(): # generator of terms
return (A344527_T(k+1, n-k) for n in count(1) for k in range(n))
A344527_list = list(islice(A344527_gen(),30)) # Chai Wah Wu, Nov 02 2023
A344524
a(n) = Sum_{1 <= i, j, k, l, m <= n} gcd(i,j,k,l,m).
Original entry on oeis.org
1, 33, 246, 1060, 3165, 8091, 17128, 33936, 60645, 103825, 164886, 259368, 381841, 557595, 784200, 1091056, 1462353, 1968261, 2554810, 3327120, 4230561, 5361463, 6644196, 8302020, 10113445, 12352041, 14873418, 17924356, 21225165, 25341375, 29670556, 34920348, 40625541, 47297365
Offset: 1
-
a[n_] := Sum[EulerPhi[k] * Quotient[n, k]^5, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 22 2021 *)
-
a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, sum(l=1, n, sum(m=1, n, gcd([i, j, k, l, m]))))));
-
a(n) = sum(k=1, n, eulerphi(k)*(n\k)^5);
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+26*x^k+66*x^(2*k)+26*x^(3*k)+x^(4*k))/(1-x^k)^5)/(1-x))
A343282
Number of ordered 5-tuples (v,w, x, y, z) with gcd(v, w, x, y, z) = 1 and 1 <= {v, w, x, y, z} <= 10^n.
Original entry on oeis.org
1, 96601, 9645718621, 964407482028001, 96438925911789115351, 9643875373658964992585011, 964387358678775616636890654841, 96438734235127451288511508421855851, 9643873406165059293451290072800801506621
Offset: 0
- Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54.
Related counts of k-tuples:
A344038
Number of ordered 6-tuples (a,b,c,d,e,f) with gcd(a,b,c,d,e,f)=1 (1<= {a,b,c,d,e,f} <= 10^n).
Original entry on oeis.org
1, 983583, 983029267047, 982960635742968103, 982953384128772770413831, 982952672223441253533233827367, 982952600027678075050509511271466303, 982952593055042000417993486008754893529583, 982952592342881094406730790044111038427637071855
Offset: 0
Related counts of k-tuples:
-
a(n)={sum(k=1, 10^n+1, moebius(k)*(10^n\k)^6)} \\ Andrew Howroyd, May 08 2021
-
from labmath import mobius
def A344038(n): return sum(mobius(k)*(10**n//k)**6 for k in range(1, 10**n+1))
A332468
a(n) = Sum_{k=1..n} mu(k) * floor(n/k)^n.
Original entry on oeis.org
1, 3, 25, 239, 3091, 45863, 821227, 16711423, 387138661, 9990174303, 285262663291, 8913906888703, 302861978789371, 11111328334033327, 437889112287422401, 18446462446101903615, 827238009323454485641, 39346257879101283645743, 1978418304199236175597105
Offset: 1
-
[&+[MoebiusMu(k)*Floor(n/k)^n:k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 13 2020
-
Table[Sum[MoebiusMu[k] Floor[n/k]^n, {k, 1, n}], {n, 1, 19}]
b[n_, k_] := b[n, k] = n^k - Sum[b[Floor[n/j], k], {j, 2, n}]; a[n_] := b[n, n]; Table[a[n], {n, 1, 19}]
-
a(n)={sum(k=1, n, moebius(k) * floor(n/k)^n)} \\ Andrew Howroyd, Feb 13 2020
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A344527_T(n,k):
if n == 0:
return 0
c, j, k1 = 1, 2, n//2
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A344527_T(k1,k)
j, k1 = j2, n//j2
return n*(n**(k-1)-1)-c+j
def A332468(n): return A344527_T(n,n) # Chai Wah Wu, Nov 02 2023
A101467
Number of distinct n-term ratios x_1 : x_2 : ... : x_n where each x_i is in the range [1-10].
Original entry on oeis.org
10, 63, 841, 9279, 96601, 983583, 9919561, 99602559, 998026681, 9990174303, 99950992681, 999755323839, 9998777694361, 99993891685023, 999969468040201, 9999847368997119, 99999236931275641, 999996184915051743, 9999980925350886121, 99999904629080526399
Offset: 1
Su Jianning (sujianning(AT)yahoo.com.cn), Jan 21 2005
For n=2: Consider the ratios 1:1, 1:2, ..., 1:10, 2:1, 2:2, ..., 2:10, ..., 10:1, 10:2, ..., 10:10. We get 63 different ratios from the 100 numbers list above after removing duplication. So a(2) = 63, and this is A018805(10).
-
1, seq(10^n - 5^n - 3^n - 2^n + 1, n=2..20); # Robert Israel, Nov 28 2014
-
Vec(x*(2700*x^5-5460*x^4+3579*x^3-1028*x^2+147*x-10)/((x-1)*(2*x-1)*(3*x-1)*(5*x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Nov 28 2014
Showing 1-9 of 9 results.
Comments