cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345851 Numbers that are the sum of nine fourth powers in exactly nine ways.

Original entry on oeis.org

8259, 9539, 10709, 10819, 10884, 10949, 10964, 11124, 11444, 11573, 11668, 11684, 11924, 12099, 12164, 12339, 12404, 12549, 12773, 12853, 12918, 13013, 13139, 13204, 13284, 13379, 13444, 13509, 13958, 13988, 14053, 14213, 14293, 14308, 14373, 14403, 14484
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345593 at term 2 because 9299 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 7^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 7^4 + 8^4 = 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 7^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 9^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4.

Examples

			9299 is a term because 9299 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 7^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 7^4 + 8^4 = 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 7^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 9^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A345548 Numbers that are the sum of nine cubes in nine or more ways.

Original entry on oeis.org

859, 861, 896, 903, 922, 929, 935, 939, 959, 966, 971, 973, 978, 985, 992, 997, 999, 1004, 1009, 1011, 1016, 1018, 1020, 1022, 1023, 1027, 1029, 1030, 1034, 1035, 1036, 1037, 1041, 1046, 1048, 1055, 1056, 1059, 1060, 1062, 1063, 1064, 1065, 1066, 1067, 1071
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			861 is a term because 861 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 8^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 5^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 8^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 7^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 9])
        for x in range(len(rets)):
            print(rets[x])

A345791 Numbers that are the sum of eight cubes in exactly nine ways.

Original entry on oeis.org

984, 1080, 1136, 1171, 1192, 1197, 1204, 1223, 1269, 1273, 1280, 1306, 1318, 1325, 1332, 1333, 1337, 1344, 1356, 1360, 1369, 1370, 1374, 1377, 1379, 1404, 1406, 1415, 1416, 1422, 1425, 1430, 1432, 1438, 1442, 1444, 1445, 1456, 1476, 1481, 1486, 1488, 1494
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345539 at term 5 because 1185 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 10^3 = 1^3 + 1^3 + 1^3 + 4^3 + 6^3 + 6^3 + 7^3 + 7^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 5^3 + 10^3 = 1^3 + 2^3 + 2^3 + 2^3 + 6^3 + 6^3 + 6^3 + 8^3 = 1^3 + 2^3 + 2^3 + 4^3 + 5^3 + 5^3 + 5^3 + 9^3 = 1^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 6^3 + 7^3 = 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 9^3 = 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 8^3 + 8^3 = 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 6^3 + 6^3 + 7^3 = 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 + 7^3 + 7^3.
Likely finite.

Examples

			1080 is a term because 1080 = 1^3 + 1^3 + 1^3 + 2^3 + 4^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 9^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 8^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 + 6^3 = 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 5^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 5^3 + 7^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A345800 Numbers that are the sum of nine cubes in exactly eight ways.

Original entry on oeis.org

744, 770, 805, 818, 840, 842, 844, 847, 866, 868, 877, 880, 883, 887, 894, 908, 909, 910, 911, 913, 915, 916, 920, 940, 945, 946, 948, 950, 952, 954, 955, 957, 961, 964, 965, 972, 976, 983, 987, 990, 1000, 1001, 1002, 1006, 1007, 1013, 1015, 1025, 1028, 1032
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345547 at term 9 because 859 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 6^3 + 8^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 9^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3 + 7^3 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 8^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 7^3 + 7^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 + 5^3 + 8^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 7^3 + 7^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 6^3 + 8^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 + 7^3.
Likely finite.

Examples

			770 is a term because 770 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 8^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 7^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 8])
        for x in range(len(rets)):
            print(rets[x])

A345802 Numbers that are the sum of nine cubes in exactly ten ways.

Original entry on oeis.org

966, 971, 978, 1004, 1018, 1022, 1055, 1056, 1062, 1063, 1074, 1076, 1078, 1085, 1088, 1092, 1093, 1095, 1098, 1100, 1104, 1111, 1112, 1114, 1117, 1119, 1124, 1130, 1134, 1135, 1139, 1140, 1142, 1147, 1149, 1153, 1160, 1167, 1168, 1170, 1180, 1181, 1182, 1183
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345549 at term 4 because 985 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 9^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 6^3 + 9^3 = 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 5^3 + 6^3 + 8^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 4^3 + 6^3 + 7^3 + 7^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 9^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 6^3 + 6^3 + 8^3 = 1^3 + 2^3 + 2^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 6^3 + 7^3 = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 8^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 + 9^3 = 2^3 + 2^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 6^3 + 7^3 = 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3 + 7^3.
Likely finite.

Examples

			971 is a term because 971 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 6^3 + 6^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 + 6^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])

A345811 Numbers that are the sum of ten cubes in exactly nine ways.

Original entry on oeis.org

632, 651, 658, 688, 695, 714, 736, 740, 745, 752, 773, 778, 780, 790, 795, 799, 801, 812, 813, 815, 816, 818, 821, 823, 825, 841, 843, 849, 851, 852, 853, 855, 856, 857, 858, 864, 866, 873, 880, 882, 883, 885, 890, 891, 892, 899, 905, 908, 913, 922, 924, 926
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345557 at term 7 because 721 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 5^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 5^3 + 5^3 + 6^3 + 6^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 + 6^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 6^3 + 7^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 8^3 = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3 = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 = 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 5^3 + 7^3.
Likely finite.

Examples

			651 is a term because 651 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.