cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A093766 Decimal expansion of Pi/(2*sqrt(3)).

Original entry on oeis.org

9, 0, 6, 8, 9, 9, 6, 8, 2, 1, 1, 7, 1, 0, 8, 9, 2, 5, 2, 9, 7, 0, 3, 9, 1, 2, 8, 8, 2, 1, 0, 7, 7, 8, 6, 6, 1, 4, 2, 0, 3, 3, 1, 2, 4, 0, 4, 6, 3, 7, 0, 2, 8, 7, 7, 8, 4, 9, 4, 2, 4, 6, 7, 6, 9, 4, 0, 6, 1, 5, 9, 0, 5, 6, 3, 1, 7, 6, 9, 4, 1, 8, 4, 2, 0, 6, 2, 4, 9, 4, 1, 0, 6, 0, 3, 0, 0, 8, 4, 4, 2, 8
Offset: 0

Views

Author

Eric W. Weisstein, Apr 15 2004

Keywords

Comments

Density of densest packing of equal circles in two dimensions (achieved for example by the A2 lattice).
The number gives the areal coverage (90.68... percent) of the close hexagonal (densest) packing of circles in the plane. The hexagonal unit cell is a rhombus of side length 1 and height sqrt(3)/2; the area of the unit cell is sqrt(3)/2 and the four parts of circles add to an area of one circle of radius 1/2, which is Pi/4. - R. J. Mathar, Nov 22 2011
Ratio of surface area of a sphere to the regular octahedron whose edge equals the diameter of the sphere. - Omar E. Pol, Dec 09 2013

Examples

			0.906899682117108925297039128821077866142033124046370287784942...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.7, p. 506.
  • L. B. W. Jolley, Summation of Series, Dover (1961), Eq. (84) on page 16.
  • Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag New York, Inc. (1999). See p. 149.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 30.

Crossrefs

Programs

Formula

Equals (5/6)*(7/6)*(11/12)*(13/12)*(17/18)*(19/18)*(23/24)*(29/30)*(31/30)*..., where the numerators are primes > 3 and the denominators are the nearest multiples of 6.
Equals Sum_{n>=1} 1/A134667(n). [Jolley]
Equals Sum_{n>=0} (-1)^n/A124647(n). [Jolley eq. 273]
Equals A000796 / A010469. - Omar E. Pol, Dec 09 2013
Continued fraction expansion: 1 - 2/(18 + 12*3^2/(24 + 12*5^2/(32 + ... + 12*(2*n - 1)^2/((8*n + 8) + ... )))). See A254381 for a sketch proof. - Peter Bala, Feb 04 2015
From Peter Bala, Feb 16 2015: (Start)
Equals 4*Sum_{n >= 0} 1/((6*n + 1)*(6*n + 5)).
Continued fraction: 1/(1 + 1^2/(4 + 5^2/(2 + 7^2/(4 + 11^2/(2 + ... + (6*n + 1)^2/(4 + (6*n + 5)^2/(2 + ... ))))))). (End)
The inverse is (2*sqrt(3))/Pi = Product_{n >= 1} 1 + (1 - 1/(4*n))/(4*n*(9*n^2 - 9*n + 2)) = (35/32) * (1287/1280) * (8075/8064) * (5635/5632) * (72819/72800) * ... = 1.102657790843585... - Dimitris Valianatos, Aug 31 2019
From Amiram Eldar, Aug 15 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 3) dx.
Equals Integral_{x=0..oo} 1/(3*x^2 + 1) dx. (End)
Equals 1 + Sum_{k>=1} ( 1/(6*k+1) - 1/(6*k-1) ). - Sean A. Irvine, Jul 24 2021
For positive integer k, Pi/(2*sqrt(3)) = Sum_{n >= 0} (6*k + 4)/((6*n + 1)*(6*n + 6*k + 5)) - Sum_{n = 0..k-1} 1/(6*n + 5). - Peter Bala, Jul 10 2024
From Stefano Spezia, Jun 05 2025: (Start)
Equals Sum_{k>=0} (-1)^k/((k + 1)*(3*k + 1)).
Equals Integral_{x=0..oo} 1/(x^4 + x^2 + 1) dx.
Equals Integral_{x=0..oo} x^2/(x^4 + x^2 + 1) dx. (End)
Equals sqrt(A072691) = 3*A381671. - Hugo Pfoertner, Jun 05 2025

Extensions

Entry revised by N. J. A. Sloane, Feb 10 2013

A122373 Expansion of (c(q)^3 + c(q^2)^3) / 27 in powers of q where c() is a cubic AGM theta function.

Original entry on oeis.org

1, 4, 9, 16, 24, 36, 50, 64, 81, 96, 120, 144, 170, 200, 216, 256, 288, 324, 362, 384, 450, 480, 528, 576, 601, 680, 729, 800, 840, 864, 962, 1024, 1080, 1152, 1200, 1296, 1370, 1448, 1530, 1536, 1680, 1800, 1850, 1920, 1944, 2112, 2208, 2304, 2451, 2404
Offset: 1

Views

Author

Michael Somos, Aug 30 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) = n^2 and n > 0 if and only if n = 2^i * 3^j with i, j >=0 (numbers in A003586). - Michael Somos, Jun 08 2012

Examples

			G.f. = q + 4*q^2 + 9*q^3 + 16*q^4 + 24*q^5 + 36*q^6 + 50*q^7 + 64*q^8 + 81*q^9 + 96*q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 50; QP = QPochhammer; s = QP[q^2]^5*QP[q^3]^4*(QP[q^6]/QP[q]^4) + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 04 2017, from first formula *)
  • PARI
    {a(n) = my(A, p, e, f); if( n<0, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, p^(2*e), f =- (-1)^(p%3); (p^(2*e + 2) - f^(e+1)) / (p^2 - f))))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^3 + A)^4 * eta(x^6 + A) / eta(x + A)^4, n))};

Formula

Expansion of eta(q^2)^5 * eta(q^3)^4 * eta(q^6) / eta(q)^4 in powers of q.
a(n) is multiplicative with a(2^e) = 4^e, a(3^e) = 9^e, a(p^e) = (p^(2*e + 2) - f^(e+1)) / (p^2 - f) where f = 1 if p == 1 (mod 6), f = -1 if p == 5 (mod 6).
Euler transform of period 6 sequence [4, -1, 0, -1, 4, -6, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 3^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is g.f. for A132000.
G.f.: Sum_{k>0} k^2 * x^k / (1 + x^k + x^(2*k)) * (1 + (1+(-1)^k)/8).
G.f.: Product_{k>0} (1 - x^k) * (1 + x^(3*k)) * (1 + x^k)^5 * (1 - x^(3*k))^5.
Expansion of psi(q)^2 * psi(q^3)^2 * phi(-q^3)^3 / phi(-q) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jun 23 2012
Expansion of c(q) * c(q^2) * b(q^2)^2 / (9 * b(q)) in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Jun 23 2012
G.f.: Sum_{k>0} k^2 * x^k * (1 + x^(2*k)) / (1 + x^(2*k) + x^(4*k)). - Michael Somos, Jul 05 2020
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Pi^3/(18*sqrt(3)) = 0.994526... (A346585). - Amiram Eldar, Dec 22 2023

A346583 Decimal expansion of 301 * Pi^7 / (524880 * sqrt(3)).

Original entry on oeis.org

9, 9, 9, 9, 8, 8, 3, 7, 7, 4, 0, 9, 4, 0, 5, 7, 8, 7, 8, 6, 2, 1, 9, 1, 3, 6, 8, 3, 6, 1, 8, 6, 3, 1, 4, 4, 4, 1, 0, 6, 6, 1, 8, 2, 2, 4, 7, 5, 5, 4, 0, 7, 2, 1, 9, 8, 4, 6, 1, 3, 5, 7, 5, 9, 1, 1, 0, 2, 3, 3, 0, 8, 6, 5, 2, 2, 7, 4, 6, 3, 0, 1, 0, 1, 2, 3, 1
Offset: 0

Views

Author

Sean A. Irvine, Jul 24 2021

Keywords

Examples

			0.999988377409405787862191368361863144410...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (314).

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[7 * 43 * Pi^7 / (6! * 3^6 * Sqrt[3]),88]]] (* Stefano Spezia, Jul 24 2021 *)

Formula

Equals 7 * 43 * Pi^7 / (6! * 3^6 * sqrt(3)).
Equals 1 + Sum_{k>=1} ( 1/(6*k+1)^7 - 1/(6*k-1)^7 ).

A346584 Decimal expansion of 11 * Pi^5 / (1944 * sqrt(3)).

Original entry on oeis.org

9, 9, 9, 7, 3, 5, 6, 0, 7, 6, 4, 8, 7, 5, 1, 7, 3, 8, 9, 9, 5, 0, 2, 8, 6, 9, 4, 7, 8, 8, 5, 0, 6, 9, 0, 7, 7, 8, 1, 3, 6, 7, 4, 4, 8, 3, 1, 2, 2, 6, 5, 8, 9, 1, 3, 6, 6, 3, 9, 3, 7, 4, 5, 5, 8, 0, 6, 5, 8, 0, 7, 4, 6, 4, 6, 4, 1, 6, 4, 0, 3, 3, 2, 2, 2, 3, 2
Offset: 0

Views

Author

Sean A. Irvine, Jul 24 2021

Keywords

Examples

			0.99973560764875173899502869478850690...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (314).

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[11 * Pi^5 / (4! * 3^4 * Sqrt[3]),88]]] (* Stefano Spezia, Jul 24 2021 *)

Formula

Equals 11 * Pi^5 / (4! * 3^4 * sqrt(3)).
Equals 1 + Sum_{k>=1} ( 1/(6*k+1)^5 - 1/(6*k-1)^5 ).
Showing 1-4 of 4 results.