cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A351020 Maximal permanent of an n X n symmetric Toeplitz matrix using the integers 1 to n.

Original entry on oeis.org

1, 1, 5, 64, 1650, 66731, 3968777, 323676148, 34890266414, 4780256317586, 814873637329516, 168491370685328792
Offset: 0

Views

Author

Stefano Spezia, Jan 29 2022

Keywords

Examples

			a(3) = 64:
     2    3    1
     3    2    3
     1    3    2
a(4) = 1650:
     3    4    2    1
     4    3    4    2
     2    4    3    4
     1    2    4    3
a(5) = 66731:
     3    5    4    2    1
     5    3    5    4    2
     4    5    3    5    4
     2    4    5    3    5
     1    2    4    5    3
		

Crossrefs

Cf. A204235, A307783, A350938, A351019 (minimal).

Programs

  • Python
    from itertools import permutations
    from sympy import Matrix
    def A351020(n): return 1 if n == 0 else max(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).per() for p in permutations(range(1,n+1))) # Chai Wah Wu, Jan 31 2022

Extensions

a(9) from Alois P. Heinz, Jan 31 2022
a(10)-a(11) from Lucas A. Brown, Sep 06 2022

A359616 a(n) is the minimal permanent of an n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with all off-diagonal elements purely imaginary.

Original entry on oeis.org

1, 1, 5, 18, 245, 2249, 57213, 947177, 50431724, 1282453618
Offset: 0

Views

Author

Stefano Spezia, Jan 07 2023

Keywords

Examples

			a(4) = 245:
  [   1,  3*i,  2*i, 4*i;
   -3*i,    1,  3*i, 2*i;
   -2*i, -3*i,    1, 3*i;
   -4*i, -2*i, -3*i,   1 ]
		

Crossrefs

Cf. A359614 (minimal determinant), A359615 (maximal determinant), A359617 (maximal).

Programs

  • Mathematica
    a={1}; For[n=1, n<=7, n++, mn=Infinity; For[d=1, d<=n, d++, For[i=1, i<=(n-1)!, i++, If[(t=Permanent[ToeplitzMatrix[Join[{d}, I Part[Permutations[Drop[Range[n], {d}]], i]]]])
    				
  • Python
    from itertools import permutations
    from sympy import Matrix, I
    def A359616(n): return min(Matrix(n,n,[(d[i-j] if i>j else -d[j-i]) if i!=j else d[0]*I for i in range(n) for j in range(n)]).per()*(1,-I,-1,I)[n&3] for d in permutations(range(1,n+1))) if n else 1 # Chai Wah Wu, Jan 25 2023

A358326 a(n) is the minimal permanent of an n X n symmetric Toeplitz matrix using the integers 0 to n - 1.

Original entry on oeis.org

1, 0, 1, 4, 34, 744, 17585, 688202, 33248174, 2144597292, 169696358796, 16521881847592
Offset: 0

Views

Author

Stefano Spezia, Nov 09 2022

Keywords

Examples

			a(3) = 4:
    [0, 1, 2;
     1, 0, 1;
     2, 1, 0]
a(4) = 34:
    [1, 0, 2, 3;
     0, 1, 0, 2;
     2, 0, 1, 0;
     3, 2, 0, 1]
a(5) = 744:
    [1, 0, 2, 3, 4;
     0, 1, 0, 2, 3;
     2, 0, 1, 0, 2;
     3, 2, 0, 1, 0;
     4, 3, 2, 0, 1]
		

Crossrefs

Cf. A351019.
Cf. A358323 (minimal determinant), A358324 (maximal determinant), A358327 (maximal).

Programs

  • Mathematica
    Join[{1}, Table[Min[Table[Permanent[ToeplitzMatrix[Part[Permutations[Join[{0}, Range[n-1]]], i]]],{i,n!}]],{n,9}]]

Extensions

a(10) and a(11) from Lucas A. Brown, Nov 16 2022

A369831 a(n) is the number of distinct values of the permanent of an n X n symmetric Toeplitz matrix using the integers 1 to n.

Original entry on oeis.org

1, 1, 1, 6, 23, 120, 720, 5040, 40320, 362880
Offset: 0

Views

Author

Stefano Spezia, Feb 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := CountDistinct[Table[Permanent[ToeplitzMatrix[Part[Permutations[Range[n]],i]]], {i, n!}]]; Join[{1}, Array[a,9]]
  • Python
    from itertools import permutations
    from sympy import Matrix
    def A369831(n): return len({Matrix([p[i:0:-1]+p[:n-i] for i in range(n)]).per() for p in permutations(range(1,n+1))}) # Chai Wah Wu, Feb 12 2024

Formula

a(n) <= A000142(n).
Conjectured e.g.f.: 1/(1 - x) - x^2/2 - x^4/24.

A351610 Minimal permanent of an n X n symmetric matrix using the integers 1 to n*(n + 1)/2.

Original entry on oeis.org

1, 1, 7, 163, 9850, 1243806, 284995981
Offset: 0

Views

Author

Stefano Spezia, Feb 14 2022

Keywords

Examples

			a(3) = 163:
   1    2    3
   2    5    4
   3    4    6
a(4) = 9850:
   1    2    3    4
   2    8    5    6
   3    5    9    7
   4    6    7   10
		

Crossrefs

Extensions

a(5)-a(6) from Hugo Pfoertner, Feb 15 2022

A364230 Triangle read by rows: T(n, k) is the number of n X n symmetric Toeplitz matrices of rank k using all the integers 1, 2, ..., n.

Original entry on oeis.org

1, 0, 2, 0, 0, 6, 0, 0, 0, 24, 0, 0, 0, 0, 120, 0, 0, 0, 0, 2, 718, 0, 0, 0, 0, 4, 31, 5005, 0, 0, 0, 0, 0, 2, 44, 40274, 0, 0, 0, 0, 0, 0, 4, 272, 362604, 0, 0, 0, 0, 0, 0, 0, 111, 774, 3627915, 0, 0, 0, 0, 0, 0, 2, 14, 244, 6974, 39909566, 0, 0, 0, 0, 0, 0, 0, 4, 64, 743, 9533, 478991256
Offset: 1

Views

Author

Stefano Spezia, Jul 14 2023

Keywords

Examples

			The triangle begins:
  1;
  0, 2;
  0, 0, 6;
  0, 0, 0, 24;
  0, 0, 0,  0, 120;
  0, 0, 0,  0,   2, 718;
  0, 0, 0,  0,   4,  31, 5005;
  ...
		

Crossrefs

Cf. A000142 (row sums), A350953 (minimal determinant), A350954 (maximal determinant), A351019 (minimal permanent), A351020 (maximal permanent), A356865 (minimal nonzero absolute value determinant), A364231 (right diagonal).

Programs

  • Mathematica
    T[n_,k_]:= Count[Table[MatrixRank[ToeplitzMatrix[Part[Permutations[Range[n]], i]]],{i,n!}],k]; Table[T[n,k],{n,8},{k,n}]//Flatten
  • PARI
    MkMat(v)={matrix(#v, #v, i, j, v[1+abs(i-j)])}
    row(n)={my(f=vector(n)); forperm(vector(n,i,i), v, f[matrank(MkMat(v))]++); f} \\ Andrew Howroyd, Dec 30 2023

Extensions

Terms a(46) and beyond from Andrew Howroyd, Dec 30 2023

A364231 a(n) is the number of n X n nonsingular symmetric Toeplitz matrices using all the integers 1, 2, ..., n.

Original entry on oeis.org

1, 2, 6, 24, 120, 718, 5005, 40274, 362604, 3627915, 39909566, 478991256
Offset: 1

Views

Author

Stefano Spezia, Jul 14 2023

Keywords

Crossrefs

Right diagonal of A364230.
Cf. A350953 (minimal determinant), A350954 (maximal determinant), A351019 (minimal permanent), A351020 (maximal permanent), A356865 (minimal nonzero absolute value determinant).

Programs

  • Mathematica
    a[n_]:=Count[Table[MatrixRank[ToeplitzMatrix[Part[Permutations[Range[n]],i]]],{i,n!}],n]; Array[a,8]

Extensions

a(10)-a(12) from Andrew Howroyd, Dec 30 2023
Showing 1-7 of 7 results.