A354221
a(n) is the numerator of the sum of reciprocals of the 2*n+1 consecutive primes starting with A353534(n).
Original entry on oeis.org
31, 2927, 24749279, 52404847006669763041, 264723826652711, 25709009860910962769666716861, 31275582984007762166936591, 9357116090687897728867556889841, 13585328068403621603022853, 4395564666287059721647967305937566473834609232641255659809, 15360643606799479140185671512081451
Offset: 1
a(3) = 24749279 because A353534(3) = 5 and 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/23 = 24749279/37182145.
-
f:= proc(n) local i,k,v;
for k from 1 do
v:= numer(add(1/ithprime(i),i=k..k+2*n));
if isprime(v) then return v fi
od
end proc:
map(f, [$1..30]);
A024451
a(n) is the numerator of Sum_{i = 1..n} 1/prime(i).
Original entry on oeis.org
0, 1, 5, 31, 247, 2927, 40361, 716167, 14117683, 334406399, 9920878441, 314016924901, 11819186711467, 492007393304957, 21460568175640361, 1021729465586766997, 54766551458687142251, 3263815694539731437539, 201015517717077830328949, 13585328068403621603022853
Offset: 0
0/1, 1/2, 5/6, 31/30, 247/210, 2927/2310, 40361/30030, 716167/510510, 14117683/9699690, ...
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Sect. 2.2.
- D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Sect. VII.28.
Subsequence of
A048103 (after the initial 0).
Cf.
A369972 (k where prime(1+k)|a(k)),
A369973 (corresponding primorials),
A293457 (corresponding primes),
A377992 (antiderivatives of the terms > 1 of this sequence).
-
[ Numerator(&+[ NthPrime(k)^-1: k in [1..n]]): n in [1..18] ]; // Bruno Berselli, Apr 11 2011
-
h:= n-> add(1/(ithprime(i)),i=1..n);
t1:=[seq(h(n),n=0..50)];
t1a:=map(numer,t1); # A024451
t1b:=map(denom,t1); # A002110 - N. J. A. Sloane, Apr 25 2014
-
a[n_] := Numerator @ Sum[1/Prime[i], {i, n}]; Array[a,18] (* Jean-François Alcover, Apr 11 2011 *)
f[k_] := Prime[k]; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 16}] (* A024451 *)
(* Clark Kimberling, Dec 29 2011 *)
Numerator[Accumulate[1/Prime[Range[20]]]] (* Harvey P. Dale, Apr 11 2012 *)
-
a(n) = numerator(sum(i=1, n, 1/prime(i))); \\ Michel Marcus, Sep 18 2018
-
from sympy import prime
from fractions import Fraction
def a(n): return sum(Fraction(1, prime(k)) for k in range(1, n+1)).numerator
print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 12 2021
-
from math import prod
from sympy import prime
def A024451(n):
q = prod(plist:=tuple(prime(i) for i in range(1,n+1)))
return sum(q//p for p in plist) # Chai Wah Wu, Nov 03 2022
Showing 1-2 of 2 results.
Comments