cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A354995 a(n) = A354933(n) - A034699(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8
Offset: 1

Views

Author

Antti Karttunen, Jun 18 2022

Keywords

Crossrefs

Cf. A051283 (apparently gives the positions of nonzero terms). Cf. also A354996.

Programs

  • Mathematica
    a[n_] := SelectFirst[Divisors[n], # >= n/# && CoprimeQ[#, n/#] &] - Max[Power @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 18 2022 *)
  • PARI
    A034699(n) = if(1==n, n, my(f=factor(n)); vecmax(vector(#f[, 1], i, f[i, 1]^f[i, 2])));
    A354933(n) = fordiv(n,d,if((d>=(n/d)) && 1==gcd(d,n/d), return(d)));
    A354995(n) = (A354933(n) - A034699(n));

A051283 Numbers k such that if one writes k = Product p_i^e_i (p_i primes) and P = max p_i^e_i, then k/P > P.

Original entry on oeis.org

30, 60, 70, 84, 90, 105, 120, 126, 132, 140, 154, 165, 168, 180, 182, 195, 198, 210, 220, 231, 234, 252, 260, 264, 273, 280, 286, 306, 308, 312, 315, 330, 336, 340, 357, 360, 364, 374, 380, 385, 390, 396, 399, 408, 418, 420, 429, 440, 442, 455, 456, 462
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A346418(k) > 1 (conjectured). - Amiram Eldar, Jul 16 2021
Numbers k for which A354933(k) > A034699(k), i.e., where A354995(k) > 0 (conjectured).- Antti Karttunen, Jun 19 2022

Examples

			120 = 2^3*3^1*5^1, P = 2^3 = 8. 120 is included because 120/8 = 15 > 8.
		

Crossrefs

Cf. A034699, A080170, A110612, A346418, A354933, A354995, A354996 (characteristic function).

Programs

  • Haskell
    a051283 n = a051283_list !! (n-1)
    a051283_list = filter (\x -> (a034699 x) ^ 2 < x) [1..]
    -- Reinhard Zumkeller, May 30 2013
    
  • Mathematica
    ok[n_] := n > Max[Power @@@ FactorInteger[n]]^2; Select[Range[465], ok] (* Jean-François Alcover, Apr 11 2011 *)
  • PARI
    lista(nn) = for(k=2, nn, f=factor(k); if(k>vecmax(vector(#f[, 1], i, f[i, 1]^f[i, 2]))^2, print1(k, ", "))); \\ Jinyuan Wang, Feb 28 2020

Formula

a(n) = A080170(n) + 1 (conjectured). - Ralf Stephan, Feb 20 2004

Extensions

More terms from James Sellers, Dec 11 1999

A052128 a(1) = 1; for n > 1, a(n) is the largest divisor of n that is coprime to a larger divisor of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 3, 1, 2, 1, 4, 1, 5, 1, 1, 3, 2, 5, 4, 1, 2, 3, 5, 1, 6, 1, 4, 5, 2, 1, 3, 1, 2, 3, 4, 1, 2, 5, 7, 3, 2, 1, 5, 1, 2, 7, 1, 5, 6, 1, 4, 3, 7, 1, 8, 1, 2, 3, 4, 7, 6, 1, 5, 1, 2, 1, 7, 5, 2, 3, 8, 1, 9, 7, 4, 3, 2, 5, 3, 1, 2, 9, 4, 1, 6
Offset: 1

Views

Author

James Sellers, Jan 21 2000

Keywords

Comments

Least k > 0 such that the resultant of the k-th cyclotomic polynomial and the n-th cyclotomic polynomial is not 1. - Benoit Cloitre, Oct 13 2002
From Jianing Song, Sep 28 2022: (Start)
a(n) is the largest divisor d of n such that d <= sqrt(n) and that gcd(d,n/d) = 1.
Proof: write n = Product_{1<=i<=r} (p_i)^(e_i), let d be the largest divisor of n such that d <= sqrt(n) and that gcd(d,n/d) = 1. Obviously we have a(n) >= d. Suppose that a(n) = Product_{1<=i<=s} (p_i)^(m_i) for s <= r, 1 <= m_i <= e_i, then the larger divisor to which a(n) is coprime is a divisor of Product_{s+1<=i<=r} (p_i)^(e_i), so by definition we have a(n) <= min{Product_{1<=i<=s} (p_i)^(e_i), Product_{s+1<=i<=r} (p_i)^(e_i)} <= d. Thus a(n) = d. (End)

Examples

			a(6) = 6 / 3^1 = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[best = 1; d = Divisors[n]; While[Length[d] > 1, e = d[[1]]; d = Rest[d]; If[Min[GCD[e, d]] == 1, best = e]]; best, {n, 102}] (* T. D. Noe, Aug 23 2013 *)
  • PARI
    a(n) = my(i, j, d = divisors(n)); forstep (i = #d-1, 1, -1, for (j = i+1, #d, if (gcd(d[i], d[j]) == 1, return (d[i])))); 1 \\ Michel Marcus, Aug 22 2013
    
  • PARI
    a(n)=my(f=factor(n),v=[1]); for(i=1,#f~,v=concat(v, f[i,1]^f[i,2] *v)); v=vecsort(v); forstep(i=#v\2,2,-1,for(j=i+1,#v-1, if(gcd(v[i],v[j])==1,return(v[i])))); 1 \\ Charles R Greathouse IV, Aug 22 2013
    
  • PARI
    A052128(n) = fordiv(n,d,if((d>=(n/d)) && 1==gcd(d,n/d), return(n/d))); \\ Antti Karttunen, Jun 16 2022

Formula

a(n) = n / A354933(n) = A354933(n) - A076388(n). - Antti Karttunen, Jun 16 2022

Extensions

Terms corrected by Charles R Greathouse IV, Aug 22 2013
Definition rewritten by Jianing Song, Sep 28 2022

A076388 a(n) = minimum of y-x such that x <= y, x*y = n and gcd(x,y)=1.

Original entry on oeis.org

0, 1, 2, 3, 4, 1, 6, 7, 8, 3, 10, 1, 12, 5, 2, 15, 16, 7, 18, 1, 4, 9, 22, 5, 24, 11, 26, 3, 28, 1, 30, 31, 8, 15, 2, 5, 36, 17, 10, 3, 40, 1, 42, 7, 4, 21, 46, 13, 48, 23, 14, 9, 52, 25, 6, 1, 16, 27, 58, 7, 60, 29, 2, 63, 8, 5, 66, 13, 20, 3, 70, 1, 72, 35, 22, 15, 4, 7, 78, 11, 80, 39
Offset: 1

Views

Author

T. D. Noe, Oct 11 2002

Keywords

Comments

If n is a prime or a power of a prime, a(n) = n-1. Similar to A056737, which does not have the gcd(x,y)=1 condition.

Examples

			a(12) = 1 because of the possible (x,y) pairs, (1,12), (2,6), (3,4), the pair (3,4) yields the minimum difference and satisfies gcd(x,y)=1.
		

Crossrefs

Differs from |A354988(n)| for the first time at n=60, where a(60) = 7, while A354988(60) = -11.

Programs

  • Mathematica
    nMax = 100; Table[dvs = Divisors[n]; i = 1; j = 1; While[n/dvs[[i]] > dvs[[i]], If[GCD[n/dvs[[i]], dvs[[i]]] == 1, j = i]; i++ ]; n/dvs[[j]] - dvs[[j]], {n, 2, nMax}]
  • PARI
    A076388(n) = fordiv(n,d,if((d>=(n/d)) && 1==gcd(d,n/d), return(d-(n/d)))); \\ Antti Karttunen, Jun 16 2022

Formula

a(n) = A354933(n) - A052128(n). - Corrected by Antti Karttunen, Jun 16 2022

Extensions

Definition formally changed from x < y to x <= y, to accommodate the prepended term a(1)=0 - Antti Karttunen, Jun 16 2022
Showing 1-4 of 4 results.