cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000557 Expansion of e.g.f. 1/(1 - 2*sinh(x)).

Original entry on oeis.org

1, 2, 8, 50, 416, 4322, 53888, 783890, 13031936, 243733442, 5064992768, 115780447730, 2887222009856, 77998677862562, 2269232452763648, 70734934220015570, 2351893466832306176, 83086463910558199682, 3107896091715557654528, 122711086194279627711410
Offset: 0

Views

Author

Keywords

Comments

Inverse binomial transform of A005923. - Vladimir Reshetnikov, Oct 29 2015

References

  • Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin's summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A000557 := proc(n) local k,j; add(add((-1)^j*binomial(k,j)*(k-2*j)^n,j=0..k),k=0..n) end: # Peter Luschny, Jul 31 2011
  • Mathematica
    f[n_] := Sum[ k!*StirlingS2[n, k]*Fibonacci[k + 2], {k, 0, n}]; Array[f, 20, 0] (* Robert G. Wilson v, Aug 16 2011 *)
    With[{nn=20},CoefficientList[Series[1/(1-2*Sinh[x]),{x,0,nn}],x]Range[ 0,nn]!] (* Harvey P. Dale, Mar 11 2012 *)
    Round@Table[(-1)^n (PolyLog[-n, 1-GoldenRatio]-PolyLog[-n, GoldenRatio])/Sqrt[5], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 29 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(1/(1-2*sinh(x)))) \\ Michel Marcus, May 18 2022

Formula

E.g.f.: 1/(1-2*sinh(x)). - Vladeta Jovovic, Jul 06 2002
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^j*binomial(k,j)*(k-2*j)^n. - Peter Luschny, Jul 31 2011
a(n) = Sum_{k=0..n} k!*Stirling2(n, k)*Fibonacci(k+2).
a(n) ~ n! / (sqrt(5) * log((1+sqrt(5))/2)^(n+1)). - Vaclav Kotesovec, May 04 2015
a(n) = (-1)^n*(Li_{-n}(1-phi)-Li_{-n}(phi))/sqrt(5), where Li_n(x) denotes the polylogarithm, phi=(1+sqrt(5))/2. - Vladimir Reshetnikov, Oct 29 2015
a(0) = 1; a(n) = 2 * Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1) * a(n-2*k-1). - Ilya Gutkovskiy, Mar 10 2022
Sum_{k=0..n-1} binomial(n,k)*a(k) = A000556(n). - Greg Dresden, Jun 01 2022
a(n) = A000556(n) + A320352(n). - Seiichi Manyama, Oct 26 2022
a(n) = Sum_{k=0..n} 2^k * k! * A136630(n,k). - Seiichi Manyama, Jun 25 2025

Extensions

More terms from David W. Wilson

A358032 Expansion of e.g.f. (1 + log(1+x))/(1 - log(1+x) * (1 + log(1+x))).

Original entry on oeis.org

1, 2, 4, 16, 66, 438, 2694, 25296, 204576, 2509728, 24912816, 381010320, 4440815472, 82150191264, 1089159690912, 23879423005440, 351430312958208, 9005004020293632, 144184020764472576, 4277182103330660352, 73227226213747521792, 2499666592623881921280
Offset: 0

Views

Author

Seiichi Manyama, Oct 25 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1+log(1+x))/(1-log(1+x)*(1+log(1+x)))))
    
  • PARI
    a(n) = sum(k=0, n, k!*fibonacci(k+2)*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} k! * Fibonacci(k+2) * Stirling1(n,k).
a(n) = A005444(n) + A005445(n).
Showing 1-2 of 2 results.