cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A359890 Numbers whose prime indices do not have the same mean as median.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 66, 68, 70, 72, 75, 76, 78, 80, 84, 88, 92, 96, 98, 99, 102, 104, 108, 112, 114, 116, 117, 120, 124, 126, 130, 132, 135, 136, 138, 140, 144, 147, 148, 150, 152, 153, 154, 156, 160, 162, 164, 165
Offset: 1

Views

Author

Gus Wiseman, Jan 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
For example, the prime indices of 360 are {1,1,1,2,2,3}, with mean 5/3 and median 3/2, so 360 is in the sequence.
		

Crossrefs

The LHS (mean of prime indices) is A326567/A326568.
The complement is A359889, counted by A240219.
The odd-length case is A359891, complement A359892.
These partitions are counted by A359894.
The strict case is counted by A359898, odd-length A359900.
The RHS (median of prime indices) is A360005/2.
A058398 counts partitions by mean, see also A008284, A327482.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A359908 lists numbers whose prime indices have integer median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Mean[prix[#]]!=Median[prix[#]]&]

A359910 Number of odd-length integer factorizations of n into factors > 1 with the same mean as median.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(n) factorizations for n = 120, 960, 5760, 6720:
  120      960         5760            6720
  4*5*6    2*16*30     16*18*20        4*30*56
  2*6*10   4*12*20     3*5*6*8*8       10*21*32
           8*10*12     4*4*6*6*10      12*20*28
           3*4*4*4*5   2*2*8*10*18     4*5*6*7*8
                       2*2*2*4*4*5*9   2*4*7*10*12
                                       2*2*2*4*5*6*7
		

Crossrefs

The version for partitions is A359895, ranked by A359891.
This is the odd-length case of A359909, partitions A240219.
A001055 counts factorizations.
A326622 counts factorizations with integer mean, strict A328966.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],OddQ[Length[#]]&&Mean[#]==Median[#]&]],{n,100}]
  • PARI
    A359910(n, m=n, facs=List([])) = if(1==n, (((#facs)%2) && (facs[(1+#facs)/2]==(vecsum(Vec(facs))/#facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A359910(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

More terms from Antti Karttunen, Jan 20 2025

A359909 Number of integer factorizations of n into factors > 1 with the same mean as median.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 4, 1, 4, 2, 2, 2, 6, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 6, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 7, 1, 2, 3, 7, 2, 4, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 2, 4, 1, 6, 4, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, 6, 1, 4, 1, 4, 5, 2, 1, 6, 1, 4, 2, 5, 1, 4, 2, 3, 3, 2, 2, 11
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(n) factorizations for n = 24, 36, 60, 120, 144, 360:
  24      36        60      120       144       360
  3*8     4*9       2*30    2*60      2*72      4*90
  4*6     6*6       3*20    3*40      3*48      5*72
  2*12    2*18      4*15    4*30      4*36      6*60
  2*3*4   3*12      5*12    5*24      6*24      8*45
          2*2*3*3   6*10    6*20      8*18      9*40
                    3*4*5   8*15      9*16      10*36
                            10*12     12*12     12*30
                            4*5*6     2*2*6*6   15*24
                            2*6*10    3*3*4*4   18*20
                            2*3*4*5             2*180
                                                3*120
                                                2*10*18
                                                3*4*5*6
		

Crossrefs

The version for partitions is A240219, complement A359894.
These multisets are ranked by A359889.
The version for strict partitions is A359897.
The odd-length case is A359910.
The complement is counted by A359911.
A001055 counts factorizations.
A058398 counts partitions by mean, see also A008284, A327482.
A326622 counts factorizations with integer mean, strict A328966.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Mean[#]==Median[#]&]],{n,100}]
  • PARI
    median(lista) = if((#lista)%2, lista[(1+#lista)/2], (lista[#lista/2]+lista[1+(#lista/2)])/2);
    A359909(n, m=n, facs=List([])) = if(1==n, (#facs>0 && (median(facs)==(vecsum(Vec(facs))/#facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A359909(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

More terms from Antti Karttunen, Jan 20 2025

A363741 Number of factorizations of n satisfying (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
Position of first appearance of n is: (1, 2, 4, 16, 64, 5832, 4096, ...).

Examples

			The factorization 6*9*9*12 = 5832 has mean 9, median 9, and modes {9}, so it is counted under a(5832).
The a(n) factorizations for selected n:
2   4     16        64            5832              4096
    2*2   4*4       8*8           18*18*18          64*64
          2*2*2*2   4*4*4         6*9*9*12          8*8*8*8
                    2*2*2*2*2*2   3*6*6*6*9         16*16*16
                                  2*3*3*3*3*3*3*4   4*4*4*4*4*4
                                                    2*2*2*2*2*2*2*2*2*2*2*2
		

Crossrefs

For just (mean) = (median): A359909, see A240219, A359889, A359910, A359911.
The version for partitions is A363719, unequal A363720.
For unequal instead of equal we have A363742.
A000041 counts integer partitions.
A001055 counts factorizations, strict A045778, ordered A074206.
A089723 counts constant factorizations.
A316439 counts factorizations by length, A008284 partitions.
A326622 counts factorizations with integer mean, strict A328966.
A339846 counts even-length factorizations, A339890 odd-length.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[facs[n],{Mean[#]}=={Median[#]}==modes[#]&]],{n,100}]

A359892 Members of A026424 (numbers with an odd number of prime factors) whose prime indices do not have the same mean as median.

Original entry on oeis.org

12, 18, 20, 28, 42, 44, 45, 48, 50, 52, 63, 66, 68, 70, 72, 75, 76, 78, 80, 92, 98, 99, 102, 108, 112, 114, 116, 117, 120, 124, 130, 138, 147, 148, 153, 154, 162, 164, 165, 168, 170, 171, 172, 174, 175, 176, 180, 182, 186, 188, 190, 192, 195, 200, 207, 208
Offset: 1

Views

Author

Gus Wiseman, Jan 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   28: {1,1,4}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   50: {1,3,3}
   52: {1,1,6}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   70: {1,3,4}
   72: {1,1,1,2,2}
For example, the prime indices of 180 are {1,1,2,2,3}, with mean 9/5 and median 2, so 180 is in the sequence.
		

Crossrefs

A subset of A026424 = numbers with odd bigomega.
The LHS (mean of prime indices) is A326567/A326568.
This is the odd-length case of A359890, complement A359889.
The complement is A359891.
These partitions are counted by A359896, complement A359895.
The RHS (median of prime indices) is A360005/2.
A058398 counts partitions by mean, see also A008284, A327482.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A359902 counts odd-length partitions by median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[PrimeOmega[#]]&&Mean[prix[#]]!=Median[prix[#]]&]

Formula

Intersection of A026424 and A359890.

A363742 Number of integer factorizations of n with different mean, median, and mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 7, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 4, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0, 0, 7
Offset: 1

Views

Author

Gus Wiseman, Jun 27 2023

Keywords

Comments

An integer factorization of n is a multiset of positive integers > 1 with product n.
If there are multiple modes, then the mode is automatically considered different from the mean and median; otherwise, we take the unique mode.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
Position of first appearance of n is: 1, 30, 48, 60, 72, 200, 160, 96, ...

Examples

			The a(n) factorizations for n = 30, 48, 60, 72, 96, 144:
  (2*3*5)  (2*3*8)    (2*5*6)    (2*4*9)    (2*6*8)    (2*8*9)
           (2*2*3*4)  (2*3*10)   (3*4*6)    (3*4*8)    (3*6*8)
                      (2*2*3*5)  (2*3*12)   (2*3*16)   (2*3*24)
                                 (2*2*3*6)  (2*4*12)   (2*4*18)
                                            (2*2*3*8)  (2*6*12)
                                            (2*2*4*6)  (3*4*12)
                                            (2*3*4*4)  (2*2*4*9)
                                                       (2*3*4*6)
                                                       (2*2*3*12)
                                                       (2*2*3*3*4)
		

Crossrefs

Just (mean) != (median): A359911, complement A359909, partitions A359894.
The version for partitions is A363720, equal A363719, ranks A363730.
For equal instead of unequal we have A363741.
A001055 counts factorizations, strict A045778, ordered A074206.
A316439 counts factorizations by length, A008284 partitions.
A363265 counts factorizations with a unique mode.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[facs[n],{Mean[#]}!={Median[#]}!=modes[#]&]],{n,100}]
  • PARI
    median(lista) = if((#lista)%2, lista[(1+#lista)/2], (lista[#lista/2]+lista[1+(#lista/2)])/2);
    uniqmode(lista) = { my(freqs=Map(),v); for(i=1,#lista,if(!mapisdefined(freqs,lista[i],&v), v = 0); mapput(freqs,lista[i],1+v)); my(keys=Vec(freqs), fr, mc=0, mf=0, isuniq=0); for(i=1,#keys, fr = mapget(freqs,keys[i]); if(fr>=mf, isuniq = (fr>mf); mf = fr; mc = keys[i])); if(!isuniq, -1, mc); }; \\ Returns -1 if not unique mode.
    all_different(facs) = { my(mean=(vecsum(facs)/#facs), med=median(facs), mode=uniqmode(facs)); ((mean!=med) &&  (mean!=mode) && (med!=mode)); };
    A363742(n, m=n, facs=List([])) = if(1==n, (#facs>0 && all_different(Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A363742(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 29 2025

Extensions

More terms from Antti Karttunen, Jan 29 2025
Showing 1-6 of 6 results.