A085362
a(0)=1; for n>0, a(n) = 2*5^(n-1) - (1/2)*Sum_{i=1..n-1} a(i)*a(n-i).
Original entry on oeis.org
1, 2, 8, 34, 150, 678, 3116, 14494, 68032, 321590, 1528776, 7301142, 35003238, 168359754, 812041860, 3926147730, 19022666310, 92338836390, 448968093320, 2186194166950, 10659569748370, 52037098259090, 254308709196660
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Jun 25 2003
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt((1-x)/(1-5*x)) )); // G. C. Greubel, May 23 2020
-
a := n -> `if`(n=0,1,2*hypergeom([3/2, 1-n], [2], -4)):
seq(simplify(a(n)), n=0..22); # Peter Luschny, Jan 30 2017
-
CoefficientList[Series[Sqrt[(1-x)/(1-5x)], {x, 0, 25}], x]
-
my(x='x+O('x^66)); Vec(sqrt((1-x)/(1-5*x))) \\ Joerg Arndt, May 10 2013
-
def A085362_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( sqrt((1-x)/(1-5*x)) ).list()
A085362_list(30) # G. C. Greubel, May 23 2020
A360317
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).
Original entry on oeis.org
1, 2, 10, 52, 278, 1516, 8388, 46920, 264678, 1503052, 8581676, 49215256, 283297660, 1635904376, 9472214344, 54975423504, 319729353606, 1862896455180, 10871759717916, 63539265366264, 371837338366740, 2178604586281128, 12778264475444280, 75022726995053808
Offset: 0
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1-2*x)/(1-6*x)))
A360321
a(n) = Sum_{k=0..n} 5^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).
Original entry on oeis.org
1, 2, 16, 130, 1070, 8902, 74724, 631902, 5376840, 45990070, 395106656, 3407196982, 29477061166, 255733684010, 2224098916300, 19384492018770, 169270624419390, 1480625235653670, 12970844831940000, 113785067475668550, 999400688480388570
Offset: 0
-
Table[Sum[5^(n-k) Binomial[n-1,n-k]Binomial[2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jun 22 2025 *)
-
a(n) = sum(k=0, n, 5^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1-5*x)/(1-9*x)))
A360319
a(n) = Sum_{k=0..n} 4^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).
Original entry on oeis.org
1, 2, 14, 100, 726, 5340, 39692, 297544, 2245990, 17050796, 130061412, 996078456, 7654571772, 58995989400, 455857911768, 3530234227344, 27392392806534, 212918339726028, 1657570714812020, 12922254685161112, 100867892292766612
Offset: 0
-
a(n) = sum(k=0, n, 4^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1-4*x)/(1-8*x)))
A360322
a(n) = Sum_{k=0..n} (-5)^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).
Original entry on oeis.org
1, 2, -4, 10, -30, 102, -376, 1462, -5900, 24470, -103644, 446382, -1948854, 8605290, -38362200, 172423770, -780496110, 3554991270, -16281079900, 74927379550, -346328465930, 1607078948690, -7483861047480, 34963419415650, -163825013554400, 769694347677002
Offset: 0
-
a(n) = sum(k=0, n, (-5)^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1+5*x)/(1+x)))
A383948
Expansion of 1/sqrt((1-3*x)^3 * (1-7*x)).
Original entry on oeis.org
1, 8, 51, 308, 1855, 11340, 70665, 448320, 2887155, 18815240, 123759097, 819969276, 5464090177, 36580917716, 245837438055, 1657396783440, 11204207037315, 75918595916520, 515462211835305, 3506072423912940, 23885410548196701, 162951783575205108, 1113110415733083531
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := 1/Sqrt((1- 3*x)^3 * (1-7*x)); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 27 2025
-
CoefficientList[Series[ 1/Sqrt[(1-3*x)^3*(1-7*x)],{x,0,33}],x] (* Vincenzo Librandi, Aug 27 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt((1-3*x)^3*(1-7*x)))
A387212
Expansion of sqrt((1-3*x) / (1-7*x)^3).
Original entry on oeis.org
1, 9, 75, 599, 4659, 35595, 268485, 2005785, 14873715, 109643195, 804354417, 5877232773, 42798735805, 310767250773, 2250899498763, 16267896905895, 117347641620435, 845043416086635, 6076092412278465, 43629213402099045, 312892629725930121, 2241442380182752209
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- 3*x) / (1-7*x)^3); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
-
CoefficientList[Series[Sqrt[(1-3*x)/(1-7*x)^3],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1-3*x)/(1-7*x)^3))
A387234
Expansion of sqrt((1-3*x) / (1-7*x)^5).
Original entry on oeis.org
1, 16, 187, 1908, 18015, 161700, 1400385, 11808480, 97533075, 792374720, 6350977457, 50334074972, 395137260609, 3076728075036, 23787996024015, 182783869074000, 1396834725138435, 10622886492055680, 80436297856668225, 606683298398776620, 4559675718517366461
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- 3*x) / (1-7*x)^5); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
-
CoefficientList[Series[Sqrt[(1-3*x)/(1-7*x)^5],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1-3*x)/(1-7*x)^5))
Showing 1-8 of 8 results.
Comments