cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A085362 a(0)=1; for n>0, a(n) = 2*5^(n-1) - (1/2)*Sum_{i=1..n-1} a(i)*a(n-i).

Original entry on oeis.org

1, 2, 8, 34, 150, 678, 3116, 14494, 68032, 321590, 1528776, 7301142, 35003238, 168359754, 812041860, 3926147730, 19022666310, 92338836390, 448968093320, 2186194166950, 10659569748370, 52037098259090, 254308709196660
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jun 25 2003

Keywords

Comments

Number of bilateral Schroeder paths (i.e. lattice paths consisting of steps U=(1,1), D=(1,-1) and H=(2,0)) from (0,0) to (2n,0) and with no H-steps at even (zero, positive or negative) levels. Example: a(2)=8 because we have UDUD, UUDD, UHD, UDDU and their reflections in the x-axis. First differences of A026375. - Emeric Deutsch, Jan 28 2004
From G. C. Greubel, May 22 2020: (Start)
This sequence is part of a class of sequences, for m >= 0, with the properties:
a(n) = 2*m*(4*m+1)^(n-1) - (1/2)*Sum_{k=1..n-1} a(k)*a(n-k).
a(n) = Sum_{k=0..n} m^k * binomial(n-1, n-k) * binomial(2*k, k).
a(n) = (2*m) * Hypergeometric2F1(-n+1, 3/2; 2; -4*m), for n > 0.
n*a(n) = 2*((2*m+1)*n - (m+1))*a(n-1) - (4*m+1)*(n-2)*a(n-2).
(4*m + 1)^n = Sum_{k=0..n} Sum_{j=0..k} a(j)*a(k-j).
G.f.: sqrt( (1 - t)/(1 - (4*m+1)*t) ).
This sequence is the case of m=1. (End)

Crossrefs

Bisection of A026392.
Essentially the same as A026387.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt((1-x)/(1-5*x)) )); // G. C. Greubel, May 23 2020
    
  • Maple
    a := n -> `if`(n=0,1,2*hypergeom([3/2, 1-n], [2], -4)):
    seq(simplify(a(n)), n=0..22); # Peter Luschny, Jan 30 2017
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-5x)], {x, 0, 25}], x]
  • PARI
    my(x='x+O('x^66)); Vec(sqrt((1-x)/(1-5*x))) \\ Joerg Arndt, May 10 2013
    
  • Sage
    def A085362_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( sqrt((1-x)/(1-5*x)) ).list()
    A085362_list(30) # G. C. Greubel, May 23 2020

Formula

G.f.: sqrt((1-x)/(1-5*x)).
Sum_{i=0..n} (Sum_{j=0..i} a(j)*a(i-j)) = 5^n.
D-finite with recurrence: a(n) = (2*(3*n-2)*a(n-1)-5*(n-2)*a(n-2))/n; a(0)=1, a(1)=2. - Emeric Deutsch, Jan 28 2004
a(n) ~ 2*5^(n-1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 14 2012
G.f.: G(0), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)* (2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 22 2013
a(n) = Sum_{k=0..n} binomial(2*k,k)*binomial(n-1,n-k). - Vladimir Kruchinin, May 30 2016
a(n) = 2*hypergeom([3/2, 1-n], [2], -4) for n>0. - Peter Luschny, Jan 30 2017
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (n+k) * a(k). - Seiichi Manyama, Mar 28 2023
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (-1)^k * 5^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)

A360318 a(n) = Sum_{k=0..n} 3^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).

Original entry on oeis.org

1, 2, 12, 74, 466, 2982, 19320, 126390, 833220, 5527190, 36852052, 246751854, 1658106394, 11176100138, 75528743352, 511600414554, 3472363279170, 23609924743590, 160788499672020, 1096566516149790, 7488135911236806, 51193972101241362, 350368409215623192
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 3^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-3*x)/(1-7*x)))

Formula

G.f.: sqrt( (1-3*x)/(1-7*x) ).
n*a(n) = 2*(5*n-4)*a(n-1) - 21*(n-2)*a(n-2).
Sum_{i=0..n} Sum_{j=0..i} (1/3)^i * a(j) * a(i-j) = (7/3)^n.
a(n) = 2 * A122898(n-1) for n > 0.
a(n) ~ 2 * 7^(n - 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 04 2023
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (1/4)^n * Sum_{k=0..n} 7^k * 3^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (-1)^k * 7^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)

A360321 a(n) = Sum_{k=0..n} 5^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).

Original entry on oeis.org

1, 2, 16, 130, 1070, 8902, 74724, 631902, 5376840, 45990070, 395106656, 3407196982, 29477061166, 255733684010, 2224098916300, 19384492018770, 169270624419390, 1480625235653670, 12970844831940000, 113785067475668550, 999400688480388570
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[5^(n-k) Binomial[n-1,n-k]Binomial[2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jun 22 2025 *)
  • PARI
    a(n) = sum(k=0, n, 5^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-5*x)/(1-9*x)))

Formula

G.f.: sqrt( (1-5*x)/(1-9*x) ).
n*a(n) = 2*(7*n-6)*a(n-1) - 45*(n-2)*a(n-2).
Sum_{i=0..n} Sum_{j=0..i} (1/5)^i * a(j) * a(i-j) = (9/5)^n.
a(n) ~ 2 * 3^(2*n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 04 2023
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (1/4)^n * Sum_{k=0..n} 9^k * 5^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (-1)^k * 9^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)

A360319 a(n) = Sum_{k=0..n} 4^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).

Original entry on oeis.org

1, 2, 14, 100, 726, 5340, 39692, 297544, 2245990, 17050796, 130061412, 996078456, 7654571772, 58995989400, 455857911768, 3530234227344, 27392392806534, 212918339726028, 1657570714812020, 12922254685161112, 100867892292766612
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-4*x)/(1-8*x)))

Formula

G.f.: sqrt( (1-4*x)/(1-8*x) ).
n*a(n) = 2*(6*n-5)*a(n-1) - 32*(n-2)*a(n-2).
Sum_{i=0..n} Sum_{j=0..i} (1/4)^i * a(j) * a(i-j) = 2^n.
a(n) ~ 2^(3*n - 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 04 2023
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = Sum_{k=0..n} 2^k * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (-1)^k * 8^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)

A360322 a(n) = Sum_{k=0..n} (-5)^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).

Original entry on oeis.org

1, 2, -4, 10, -30, 102, -376, 1462, -5900, 24470, -103644, 446382, -1948854, 8605290, -38362200, 172423770, -780496110, 3554991270, -16281079900, 74927379550, -346328465930, 1607078948690, -7483861047480, 34963419415650, -163825013554400, 769694347677002
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-5)^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1+5*x)/(1+x)))

Formula

G.f.: sqrt( (1+5*x)/(1+x) ).
n*a(n) = 2*(-3*n+4)*a(n-1) - 5*(n-2)*a(n-2).
Sum_{i=0..n} Sum_{j=0..i} (-1/5)^i * a(j) * a(i-j) = (1/5)^n.
a(n) = 2 * (-1)^(n+1) * A007317(n) for n > 0.
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (-1/4)^n * Sum_{k=0..n} 5^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = (-1)^n * Sum_{k=0..n} binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)

A387211 Expansion of sqrt((1-2*x) / (1-6*x)^3).

Original entry on oeis.org

1, 8, 58, 400, 2678, 17584, 113892, 730272, 4646310, 29380912, 184867148, 1158418144, 7233806524, 45038743520, 279704675464, 1733203476288, 10718950211334, 66176597723184, 407931346057020, 2511127341708384, 15438601388617044, 94810212917983392, 581639541983344632
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- 2*x) / (1-6*x)^3); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-2*x)/(1-6*x)^3],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-2*x)/(1-6*x)^3))
    

Formula

n*a(n) = 8*n*a(n-1) - 12*(n-1)*a(n-2) for n > 1.
a(n) = (1/2)^n * Sum_{k=0..n} 3^k * (2*k+1) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} 2^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 6^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n,n-k).

A387233 Expansion of sqrt((1-2*x) / (1-6*x)^5).

Original entry on oeis.org

1, 14, 142, 1252, 10190, 78724, 586236, 4247688, 30132438, 210175540, 1445920388, 9833940472, 66237449356, 442463439656, 2934485313400, 19340115356688, 126759642351462, 826734451831956, 5368338057048756, 34721155684000920, 223765535492622564, 1437403425873718776
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- 2*x) / (1-6*x)^5); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-2*x)/(1-6*x)^5],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-2*x)/(1-6*x)^5))
    

Formula

n*a(n) = (8*n+6)*a(n-1) - 12*n*a(n-2) for n > 1.
a(n) = (1/2)^n * Sum_{k=0..n} 3^k * ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} 2^(n-k) * ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(n+1,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 6^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n+1,n-k).
Showing 1-7 of 7 results.