A085362
a(0)=1; for n>0, a(n) = 2*5^(n-1) - (1/2)*Sum_{i=1..n-1} a(i)*a(n-i).
Original entry on oeis.org
1, 2, 8, 34, 150, 678, 3116, 14494, 68032, 321590, 1528776, 7301142, 35003238, 168359754, 812041860, 3926147730, 19022666310, 92338836390, 448968093320, 2186194166950, 10659569748370, 52037098259090, 254308709196660
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Jun 25 2003
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt((1-x)/(1-5*x)) )); // G. C. Greubel, May 23 2020
-
a := n -> `if`(n=0,1,2*hypergeom([3/2, 1-n], [2], -4)):
seq(simplify(a(n)), n=0..22); # Peter Luschny, Jan 30 2017
-
CoefficientList[Series[Sqrt[(1-x)/(1-5x)], {x, 0, 25}], x]
-
my(x='x+O('x^66)); Vec(sqrt((1-x)/(1-5*x))) \\ Joerg Arndt, May 10 2013
-
def A085362_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( sqrt((1-x)/(1-5*x)) ).list()
A085362_list(30) # G. C. Greubel, May 23 2020
A360318
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).
Original entry on oeis.org
1, 2, 12, 74, 466, 2982, 19320, 126390, 833220, 5527190, 36852052, 246751854, 1658106394, 11176100138, 75528743352, 511600414554, 3472363279170, 23609924743590, 160788499672020, 1096566516149790, 7488135911236806, 51193972101241362, 350368409215623192
Offset: 0
-
a(n) = sum(k=0, n, 3^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1-3*x)/(1-7*x)))
A360321
a(n) = Sum_{k=0..n} 5^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).
Original entry on oeis.org
1, 2, 16, 130, 1070, 8902, 74724, 631902, 5376840, 45990070, 395106656, 3407196982, 29477061166, 255733684010, 2224098916300, 19384492018770, 169270624419390, 1480625235653670, 12970844831940000, 113785067475668550, 999400688480388570
Offset: 0
-
Table[Sum[5^(n-k) Binomial[n-1,n-k]Binomial[2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jun 22 2025 *)
-
a(n) = sum(k=0, n, 5^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1-5*x)/(1-9*x)))
A360319
a(n) = Sum_{k=0..n} 4^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).
Original entry on oeis.org
1, 2, 14, 100, 726, 5340, 39692, 297544, 2245990, 17050796, 130061412, 996078456, 7654571772, 58995989400, 455857911768, 3530234227344, 27392392806534, 212918339726028, 1657570714812020, 12922254685161112, 100867892292766612
Offset: 0
-
a(n) = sum(k=0, n, 4^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1-4*x)/(1-8*x)))
A360322
a(n) = Sum_{k=0..n} (-5)^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).
Original entry on oeis.org
1, 2, -4, 10, -30, 102, -376, 1462, -5900, 24470, -103644, 446382, -1948854, 8605290, -38362200, 172423770, -780496110, 3554991270, -16281079900, 74927379550, -346328465930, 1607078948690, -7483861047480, 34963419415650, -163825013554400, 769694347677002
Offset: 0
-
a(n) = sum(k=0, n, (-5)^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1+5*x)/(1+x)))
A387211
Expansion of sqrt((1-2*x) / (1-6*x)^3).
Original entry on oeis.org
1, 8, 58, 400, 2678, 17584, 113892, 730272, 4646310, 29380912, 184867148, 1158418144, 7233806524, 45038743520, 279704675464, 1733203476288, 10718950211334, 66176597723184, 407931346057020, 2511127341708384, 15438601388617044, 94810212917983392, 581639541983344632
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- 2*x) / (1-6*x)^3); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
-
CoefficientList[Series[Sqrt[(1-2*x)/(1-6*x)^3],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1-2*x)/(1-6*x)^3))
A387233
Expansion of sqrt((1-2*x) / (1-6*x)^5).
Original entry on oeis.org
1, 14, 142, 1252, 10190, 78724, 586236, 4247688, 30132438, 210175540, 1445920388, 9833940472, 66237449356, 442463439656, 2934485313400, 19340115356688, 126759642351462, 826734451831956, 5368338057048756, 34721155684000920, 223765535492622564, 1437403425873718776
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- 2*x) / (1-6*x)^5); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
-
CoefficientList[Series[Sqrt[(1-2*x)/(1-6*x)^5],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1-2*x)/(1-6*x)^5))
Showing 1-7 of 7 results.
Comments