cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A014437 Odd Fibonacci numbers.

Original entry on oeis.org

1, 1, 3, 5, 13, 21, 55, 89, 233, 377, 987, 1597, 4181, 6765, 17711, 28657, 75025, 121393, 317811, 514229, 1346269, 2178309, 5702887, 9227465, 24157817, 39088169, 102334155, 165580141, 433494437, 701408733, 1836311903, 2971215073, 7778742049, 12586269025
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A360957 (sum of reciprocals).

Programs

  • Magma
    [Fibonacci((3*Floor((n+1)/2)) + (-1)^n): n in [0..50]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    with(combinat):A014437:=proc(n)return fibonacci((3*floor((n+1)/2)) + (-1)^n):end:
    seq(A014437(n),n=0..31); # Nathaniel Johnston, Apr 18 2011
    # second Maple program:
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <1|0|4|0>>^n.<<1,1,3,5>>)[1,1]:
    seq(a(n), n=0..33);  # Alois P. Heinz, May 22 2025
  • Mathematica
    RecurrenceTable[{a[n] == 4*a[n-2] + a[n-4], a[0]==1, a[1]==1, a[2]==3, a[3]==5},a,{n,0,500}] (* G. C. Greubel, Oct 30 2015 *)
    Table[ SeriesCoefficient[(-1 - x + x^2 - x^3)/(-1 + 4*x^2 + x^4), {x, 0, n}], {n, 0, 20}] (* Nikolaos Pantelidis, Feb 01 2023 *)
    Select[Fibonacci[Range[50]],OddQ] (* Harvey P. Dale, Sep 01 2023 *)
  • PARI
    Vec((-1-x+x^2-x^3)/(-1+4*x^2+x^4) + O(x^200)) \\ Altug Alkan, Oct 31 2015
    
  • PARI
    apply( A014437(n)=fibonacci(n\/2*3+(-1)^n), [0..30]) \\ M. F. Hasler, Nov 18 2018

Formula

Fibonacci(3n+1) union Fibonacci(3n+2).
a(n) = Fibonacci(3*floor((n+1)/2) + (-1)^n). - Antti Karttunen, Feb 05 2001
G.f.: ( -1-x+x^2-x^3 ) / ( -1+4*x^2+x^4 ). - R. J. Mathar, Feb 16 2011
a(2n) = v-w, a(2n+1) = v+w, with v=A001076(n+1), w=A001076(n). Therefore, a(2n)+a(2n+1) = 2*A001076(n+1). - Ralf Stephan, Aug 31 2013
From Vladimir Reshetnikov, Oct 30 2015: (Start)
a(n) = ((cos(Pi*n/2)-sqrt(phi)*sin(Pi*n/2))/phi^((3*n+2)/2) + (sqrt(phi)*cos(Pi*n/2)^2+sin(Pi*n/2)^2)*phi^((3*n+1)/2))/sqrt(5), where phi=(1+sqrt(5))/2.
E.g.f.: (cos(x/phi^(3/2))/phi - sin(x/phi^(3/2))/sqrt(phi) + cosh(x*phi^(3/2))*phi + sinh(x*phi^(3/2))*sqrt(phi))/sqrt(5).
(End)

Extensions

a(30)-a(31) from Vincenzo Librandi, Apr 18 2011

A010342 Numbers k such that all terms in the periodic part of the continued fraction for sqrt(k) except the final term are 1.

Original entry on oeis.org

3, 7, 8, 13, 15, 24, 32, 35, 48, 58, 63, 74, 75, 80, 99, 120, 135, 136, 143, 168, 185, 195, 215, 224, 255, 288, 312, 323, 346, 360, 399, 425, 427, 440, 483, 528, 557, 560, 575, 624, 675, 711, 728, 783, 818, 819, 840, 880, 899, 960
Offset: 1

Views

Author

N. J. A. Sloane, Walter Gilbert

Keywords

Comments

Theorem: If (b-1)/(2q-1) = F(m)/F(m+1) then sqrt(q^2+b) = [q;1,1,...,1,1,2q,...], where F(m) are the Fibonacci numbers and the period contains m ones. - Thomas Ordowski, Jun 09 2012
Terms are all and only k = ((d*F(m+1) + 1)/2)^2 + d*F(m) + 1 for d>=1 odd, and m>=1 with m == 0 or 1 (mod 3) (so F(m+1) odd), and consequently lim_{n->oo} n/sqrt(a(n)) = A360957 - 1 = 1.696383... - Kevin Ryde, Mar 07 2023

Examples

			(2q-1)/(b-1) = 1/1 so b=2q. Let q=1, b=2; k = q^2 + b = 3.
		

Crossrefs

Cf. A000045 (Fibonacci).

Programs

  • Mathematica
    fQ[n_] := Union@ Most@ Last@ ContinuedFraction@ Sqrt[1/n] == {1}; Select[ Range@ 1000, fQ] (* Robert G. Wilson v, Jun 07 2012 *)

Formula

sqrt(k) = [q;1,1,...,1,1,2q,...] = sqrt(q^2+b), where (2q-1)/(b-1) = F(m+1)/F(m) for m=1,3,4,6,7,9,10,12,13,... The period contains m ones. F(m) is the m-th Fibonacci number. Note that this formula does not generate all terms of this sequence. - Thomas Ordowski, Jun 08 2012
sqrt(k) = [q;1,1,...,1,1,2q,...] with m ones in its repeating continued fraction expansion precisely when q=floor(sqrt(k)) and k=q^2+2q*F(m)/F(m+1)+F(m-1)/F(m+1). Such k are integral precisely when 2q-1 is divisible by F(m+1). - Gary Walsh, Jan 06 2023

A360958 Decimal expansion of Sum_{i>=1} 1/Fibonacci(3*i).

Original entry on oeis.org

6, 6, 3, 5, 0, 2, 1, 3, 8, 9, 3, 3, 0, 2, 8, 1, 9, 7, 1, 3, 5, 8, 8, 1, 0, 9, 5, 9, 4, 9, 9, 9, 3, 2, 9, 5, 7, 7, 5, 2, 6, 6, 2, 5, 1, 6, 2, 4, 5, 2, 9, 5, 2, 8, 3, 0, 3, 1, 0, 8, 4, 2, 5, 6, 8, 0, 3, 2, 9, 1, 6, 0, 4, 1, 4, 2, 6, 3, 3, 5, 0, 5, 1, 9, 3, 5, 4, 5, 3, 9, 3, 4, 3, 5, 4, 0, 8, 5, 0, 9, 5, 3, 2, 2, 8
Offset: 0

Views

Author

Kevin Ryde, Feb 28 2023

Keywords

Comments

Sum of reciprocals of the even Fibonacci numbers, so Sum_{i>=1} 1/A014445(i)

Examples

			.66350213893302819713588109594999329...
		

Crossrefs

Formula

Equals A079586 - A360957.
Showing 1-3 of 3 results.