cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A053529 a(n) = n! * number of partitions of n.

Original entry on oeis.org

1, 1, 4, 18, 120, 840, 7920, 75600, 887040, 10886400, 152409600, 2235340800, 36883123200, 628929100800, 11769069312000, 230150688768000, 4833164464128000, 105639166144512000, 2464913876705280000, 59606099200327680000, 1525429559126753280000, 40464026199993876480000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 16 2000

Keywords

Comments

Commuting permutations: number of ordered pairs (g, h) in Sym(n) such that gh = hg.
Equivalently sum of the order of all normalizers of all cyclic subgroups of Sym(n). - Olivier Gérard, Apr 04 2012
From Gus Wiseman, Jan 16 2019: (Start)
Also the number of Young tableaux with distinct entries from 1 to n, where a Young tableau is an array obtained by replacing the dots in the Ferrers diagram of an integer partition of n with positive integers. For example, the a(3) = 18 tableaux are:
123 213 132 312 231 321
.
12 21 13 31 23 32
3 3 2 2 1 1
.
1 2 1 3 2 3
2 1 3 1 3 2
3 3 2 2 1 1
(End)

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.12, solution.

Crossrefs

Column k=2 of A362827.
Sequences counting pairs of functions from an n-set to itself: A053529, A181162, A239749-A239785, A239836-A239841.

Programs

  • Magma
    a:= func< n | NumberOfPartitions(n)*Factorial(n) >; [ a(n) : n in [0..25]]; // Vincenzo Librandi, Jan 17 2019
    
  • Maple
    seq(count(Permutation(n))*count(Partition(n)),n=1..20); # Zerinvary Lajos, Oct 16 2006
    with(combinat): A053529 := proc(n): n! * numbpart(n) end: seq(A053529(n), n=0..20); # Johannes W. Meijer, Jul 28 2016
  • Mathematica
    Table[PartitionsP[n] n!, {n, 0, 20}] (* T. D. Noe, Jun 19 2012 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, x^k/(1-x^k)/k)))) \\ Joerg Arndt, Apr 16 2010
    
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(sum(n=0, N, x^n/prod(k=1,n,1-x^k)))) \\ Joerg Arndt, Jan 29 2011
    
  • PARI
    a(n) = n!*numbpart(n); \\ Michel Marcus, Jul 28 2016
    
  • Python
    from math import factorial
    from sympy import npartitions
    def A053529(n): return factorial(n)*npartitions(n) # Chai Wah Wu, Jul 10 2023

Formula

E.g.f: Sum_{n>=0} x^n/(Product_{k=1..n} 1-x^k) = exp(Sum_{n>=1} (x^n/n)/(1-x^n)). - Joerg Arndt, Jan 29 2011
a(n) = Sum{k=1..n} (((n-1)!/(n-k)!)*sigma(k)*a(n-k)), n > 0, and a(0)=1. See A274760. - Johannes W. Meijer, Jul 28 2016
a(n) ~ sqrt(Pi/6)*exp(sqrt(2/3)*Pi*sqrt(n))*n^n/(2*exp(n)*sqrt(n)). - Ilya Gutkovskiy, Jul 28 2016

A072169 Commuting permutations: number of ordered triples of permutations f, g, h in Symm(n) which all commute.

Original entry on oeis.org

1, 1, 8, 48, 504, 4680, 66240, 856800, 14515200, 242040960, 4775500800, 95520902400, 2175146265600, 50438868480000, 1292330988748800, 34092378448128000, 971277752180736000, 28566680100102144000, 896191466580393984000, 29029508406664077312000
Offset: 0

Views

Author

N. J. A. Sloane, Sep 06 2003. More terms from A061256 from N. J. A. Sloane, Jun 13 2012

Keywords

References

  • a(1)-a(7) computed by John McKay, Sep 06 2003.

Crossrefs

Column k=3 of A362827.

Programs

  • Magma
    for n in {1 .. 5} do G := SymmetricGroup(n); t1 := 0; for g in G do for h in G do for i in G do if g*h eq h*g and g*i eq i*g and h*i eq i*h then t1 := t1+1; end if; end for; end for; end for; n, t1; end for;
  • Mathematica
    nn = 20; b = Table[DivisorSigma[1, n], {n, nn}]; Range[0, nn]! CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}],  x] (* T. D. Noe, Jun 19 2012 *)

Formula

Equals A061256(n)*n!.

A362826 Array read by antidiagonals: T(n,k) is the number of k-tuples of permutations of [n] which commute, divided by n!, n >= 0, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 8, 8, 5, 1, 1, 1, 16, 21, 21, 7, 1, 1, 1, 32, 56, 84, 39, 11, 1, 1, 1, 64, 153, 331, 206, 92, 15, 1, 1, 1, 128, 428, 1300, 1087, 717, 170, 22, 1, 1, 1, 256, 1221, 5111, 5832, 5512, 1810, 360, 30, 1
Offset: 0

Views

Author

Andrew Howroyd, May 09 2023

Keywords

Comments

T(n,k) is also the number of nonisomorphic (k-1)-tuples of permutations of an n-set that pairwise commute. Isomorphism is up to permutation of the elements of the n-set.

Examples

			Array begins:
=======================================================
n/k| 1  2   3    4     5       6        7         8 ...
---+---------------------------------------------------
0  | 1  1   1    1     1       1        1         1 ...
1  | 1  1   1    1     1       1        1         1 ...
2  | 1  2   4    8    16      32       64       128 ...
3  | 1  3   8   21    56     153      428      1221 ...
4  | 1  5  21   84   331    1300     5111     20144 ...
5  | 1  7  39  206  1087    5832    31949    178486 ...
6  | 1 11  92  717  5512   42601   333012   2635637 ...
7  | 1 15 170 1810 19252  208400  2303310  25936170 ...
8  | 1 22 360 5462 81937 1241302 19107225 299002252 ...
  ...
		

Crossrefs

Columns k=1..4 are A000012, A000041, A061256, A226313.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    M(n, m=n)={my(v=vector(m), u=vector(n, n, n==1)); for(j=1, #v, v[j]=concat([1], EulerT(u))~; u=dirmul(u, vector(n, n, n^(j-1)))); Mat(v)}
    { my(A=M(8)); for(n=1, #A~, print(A[n, ])) }

Formula

Column k is the Euler transform of column k-1 of A160870.
T(n,k) = A362827(n,k) / n!.
G.f. of column k: exp(Sum_{i>=1} x^i*A160870(i,k)/i).
G.f. of column k > 1: 1/(Product_{i>=1} (1 - x^i)^A160870(i,k-1)).

A362828 Number of n-tuples of permutations of [n] that pairwise commute.

Original entry on oeis.org

1, 1, 4, 48, 2016, 130440, 30672720, 11608682400, 12055770800640, 24154259257215360, 117792549941415955200, 1161512734993746635808000, 25629823970496421449477580800, 1215203193235691517749414518195200, 123585796012441765074167804498857267200
Offset: 0

Views

Author

Andrew Howroyd, May 08 2023

Keywords

Comments

Two permutations x,y on [n] commute if x*y = y*x.

Crossrefs

Main diagonal of A362827.
Cf. A362823.
Showing 1-4 of 4 results.