A363310
Expansion of g.f. A(x) satisfying A(x) = 1 + x*G(x)^5, where G(x) = 1 + x*(G(x)^3 + G(x)^5) is the g.f. of A363311.
Original entry on oeis.org
1, 1, 10, 120, 1620, 23560, 360352, 5714800, 93129840, 1550132320, 26242225600, 450448137216, 7821608426880, 137145465358080, 2424899712359680, 43186456105340160, 774013543036174080, 13949937641606981120, 252666943472167541760, 4596736161565468815360
Offset: 0
G.f.: A(x) = = 1 + x + 10*x^2 + 120*x^3 + 1620*x^4 + 23560*x^5 + 360352*x^6 + 5714800*x^7 + 93129840*x^8 + 1550132320*x^9 + 26242225600*x^10 + ...
such that A(x) = 1 + x*G(x)^5 where
G(x) = 1 + 2*x + 16*x^2 + 180*x^3 + 2360*x^4 + 33760*x^5 + 510928*x^6 + 8043440*x^7 + ... + A363311(n)*x^n + ...
satisfies G(x) = 1 + x*(G(x)^3 + G(x)^5).
Also, A(x) = B(x*A(x)^2) where B(x) = A(x/B(x)^2) begins
B(x) = 1 + x + 8*x^2 + 67*x^3 + 590*x^4 + 5403*x^5 + 51034*x^6 + 494268*x^7 + ... + A363309(n)*x^n + ...
-
{a(n) = if(n==0,1, sum(k=0, n-1, 5*binomial(n-1, k)*binomial(3*n+2*k+2, n-1)/(3*n+2*k+2) ) )}
for(n=0, 20, print1(a(n), ", "))
A363304
Expansion of g.f. A(x) satisfying A(x) = 1 + x*(A(x)^4 + A(x)^7).
Original entry on oeis.org
1, 2, 22, 350, 6538, 133658, 2895214, 65294502, 1516963346, 36056007602, 872615973766, 21430572885422, 532737957899290, 13379121740808266, 338941379999841758, 8651415618928816886, 222278432539991439906, 5743974149517874477922, 149192980850883703986166
Offset: 0
G.f.: A(x) = 1 + 2*x + 22*x^2 + 350*x^3 + 6538*x^4 + 133658*x^5 + 2895214*x^6 + 65294502*x^7 + 1516963346*x^8 + 36056007602*x^9 + ...
where A(x) = 1 + x*(A(x)^4 + A(x)^7).
RELATED SERIES.
A(x)^4 = 1 + 8*x + 112*x^2 + 1960*x^3 + 38528*x^4 + 813064*x^5 + 17998512*x^6 + 412364968*x^7 + ...
A(x)^7 = 1 + 14*x + 238*x^2 + 4578*x^3 + 95130*x^4 + 2082150*x^5 + 47295990*x^6 + 1104598378*x^7 + ...
-
{a(n) = sum(k=0, n, binomial(n, k)*binomial(4*n+3*k+1, n)/(4*n+3*k+1) )}
for(n=0, 20, print1(a(n), ", "))
A363309
Expansion of g.f. A(x) = F(x*F(x)^5), where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 8, 67, 590, 5403, 51034, 494268, 4886794, 49153835, 501631980, 5182767291, 54115252508, 570206217940, 6055948422280, 64765311313944, 696876526961130, 7539151412082315, 81957518070961472, 894826829565106185, 9808173152466891270, 107888887505651377475
Offset: 0
G.f.: A(x) = 1 + x + 8*x^2 + 67*x^3 + 590*x^4 + 5403*x^5 + 51034*x^6 + 494268*x^7 + 4886794*x^8 + 49153835*x^9 + 501631980*x^10 + ...
such that A(x) = F(x*F(x)^5) where F(x) = 1 + x*F(x)^3 begins
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 + ... + A001764(n)*x^n + ...
RELATED SERIES.
Let B(x) = A(x*B(x)^2) which begins
B(x) = 1 + x + 10*x^2 + 120*x^3 + 1620*x^4 + 23560*x^5 + 360352*x^6 + 5714800*x^7 + 93129840*x^8 + ... + A363310(n)*x^n + ...
then
( (B(x) - 1)/x )^(1/5) = 1 + 2*x + 16*x^2 + 180*x^3 + 2360*x^4 + 33760*x^5 + 510928*x^6 + 8043440*x^7 + ... + A363311(n)*x^n + ...
is an integer series.
-
{a(n) = if(n==0, 1, sum(k=1, n, 5*k* binomial(3*k+1, k) * binomial(3*n+2*k, n-k) / ((3*k+1)*(3*n+2*k)) ) )}
for(n=0, 30, print1(a(n), ", "))
-
/* G.f. A(x) = F(x*F(x)^5), where F(x) = 1 + x*F(x)^3 */
{a(n) = my(F = 1); for(i=1,n, F = 1 + x*F^3 + x*O(x^n));
polcoeff( subst(F, x, x*F^5), n)}
for(n=0, 30, print1(a(n), ", "))
A364167
Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^3 * (1 + A(x)^3).
Original entry on oeis.org
1, 2, 18, 234, 3570, 59586, 1053570, 19392490, 367677090, 7131417282, 140834140722, 2822214963882, 57243994984722, 1172991472484610, 24245748916730658, 504935751379031082, 10584721220759172162, 223163804001804187266, 4729176407109705542994, 100676187744957784842090
Offset: 0
-
a:= n-> sum(binomial(n, k)*binomial(3*n+3*k+1, n)/(3*n+3*k+1), k=0..n):
seq(a(n), n=0..49); # Christian N. Hofmann, Jul 14 2023
-
a(n) = sum(k=0, n, binomial(n, k)*binomial(3*n+3*k+1, n)/(3*n+3*k+1));
A364397
G.f. satisfies A(x) = 1 + x/A(x)^2*(1 + 1/A(x)^2).
Original entry on oeis.org
1, 2, -12, 124, -1560, 21776, -324256, 5046096, -81086112, 1335113408, -22408067200, 381942129792, -6593494698752, 115044039049728, -2025580621035520, 35943759448886528, -642162301086308864, 11541259115333684224, -208521418711421405184
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(3*n+2*k-2, n-1))/n);
A371661
G.f. satisfies A(x) = 1 + x * A(x)^3 * (1 + A(x))^2.
Original entry on oeis.org
1, 4, 64, 1424, 36800, 1036160, 30843648, 954671360, 30415326208, 990831196160, 32853724512256, 1105132250898432, 37620337933582336, 1293586791397064704, 44863864476704768000, 1567543145774827241472, 55125711913212153954304
Offset: 0
-
a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 4^(n-k)*binomial(n, k)*binomial(4*n-k, n-1-2*k))/n);
A363305
Expansion of g.f. A(x) satisfying A(x) = 1 + x*(A(x)^5 + A(x)^9).
Original entry on oeis.org
1, 2, 28, 576, 13968, 371280, 10465152, 307252032, 9295409664, 287758274304, 9071667965184, 290237226038272, 9399819302979584, 307570021821937664, 10152439243763290112, 337658352835320934400, 11304320019217804476416, 380650592731460987617280
Offset: 0
G.f.: A(x) = 1 + 2*x + 28*x^2 + 576*x^3 + 13968*x^4 + 371280*x^5 + 10465152*x^6 + 307252032*x^7 + 9295409664*x^8 + ...
where A(x) = 1 + x*(A(x)^5 + A(x)^9).
RELATED SERIES.
A(x)^5 = 1 + 10*x + 180*x^2 + 4080*x^3 + 104160*x^4 + 2858352*x^5 + 82336320*x^6 + 2455727040*x^7 + ...
A(x)^9 = 1 + 18*x + 396*x^2 + 9888*x^3 + 267120*x^4 + 7606800*x^5 + 224915712*x^6 + 6839682624*x^7 + ...
-
{a(n) = sum(k=0, n, binomial(n, k)*binomial(5*n+4*k+1, n)/(5*n+4*k+1) )}
for(n=0, 20, print1(a(n), ", "))
A363380
G.f. satisfies A(x) = 1 + x * A(x)^4 * (1 + A(x)^2).
Original entry on oeis.org
1, 2, 20, 284, 4712, 85392, 1638112, 32699472, 672188768, 14133399744, 302535052160, 6570819330688, 144442463464704, 3207564324825600, 71848240540852224, 1621452789508328704, 36831997860270007808, 841470878382566444032
Offset: 0
-
a(n) = sum(k=0, n, binomial(n, k)*binomial(4*n+2*k+1, n)/(4*n+2*k+1));
A364195
Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^5 * (1 + A(x)^2).
Original entry on oeis.org
1, 2, 24, 412, 8280, 181904, 4232048, 102479184, 2555884896, 65207430848, 1693785940992, 44643489969792, 1190986788639232, 32097745138518528, 872595854798515456, 23900545715576753408, 658934625866433496576, 18271554709525993556992, 509241947434834351042560
Offset: 0
-
a(n) = sum(k=0, n, binomial(n, k)*binomial(5*n+2*k+1, n)/(5*n+2*k+1));
A371660
G.f. satisfies A(x) = 1 + x * A(x)^3 * (1 + A(x) + A(x)^2).
Original entry on oeis.org
1, 3, 36, 603, 11745, 249372, 5599044, 130735620, 3142426428, 77238209502, 1932396279066, 49047725266101, 1259884849971465, 32690034127387431, 855528520866461010, 22556952666651901761, 598607836414445357145, 15976563963437863357146
Offset: 0
-
a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 3^(n-k)*binomial(n, k)*binomial(4*n-k, n-1-2*k))/n);
Showing 1-10 of 11 results.
Comments