cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A364496 Numbers k such that k is a multiple of A163511(k).

Original entry on oeis.org

0, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 16383, 24576, 32766, 49152, 65532, 98304, 131064, 196608, 262128, 393216, 524256, 786432, 1048512, 1572864, 2097024, 3145728, 4194048, 6291456, 8388096, 12582912, 16776192, 25165824, 33552384, 50331648, 67104768, 100663296, 134209536, 201326592
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2023

Keywords

Comments

If n is present, then 2*n is also present, and vice versa.
A007283 is included as a subsequence, because it gives the known fixed points of map n -> A163511(n).
Sequence A243071(A364497(.)) sorted into ascending order.

Examples

			16383 is present, because A163511(16383) = 43, as 16383 = 2^14 - 1 and A000040(14) = 43, and 43 is a factor of 16383 = 3*43*127.
536870895 is present, because A163511(536870895) = 1177 (11*107), which divides 536870895 (3*5*11*47*107*647). See also example in A364498.
		

Crossrefs

Positions of 1's in A364492.
Subsequence of A364292.
Cf. A007283 (subsequence), A163511, A364963 (odd terms).

Programs

A364495 Odd numbers k such that k divides A163511(k).

Original entry on oeis.org

1, 3, 9, 105, 429, 1365, 1617, 3887, 4235, 10829, 14025, 17745, 21125, 22627, 38025, 54587, 70805, 100555, 115159, 147875, 168751, 169065, 175769, 181447, 181545, 291525, 297297, 303875, 338675, 350987, 501787, 513825, 518035, 549081, 560947, 566865, 594473, 624169, 676039, 735875, 745147, 831875, 869193, 957125
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2023

Keywords

Examples

			For n = 513825 = 3 * 5^2 * 13 * 17 * 31, A163511(n) = 13873275 = 3^4 * 5^2 * 13 * 17 * 31, so A163511(n)/n = 27 (which is an integer), and therefore 513825 is included in this sequence.
		

Crossrefs

Odd terms in A364494.
After 1, sequence A243071(A364965(n)), for n>=1, sorted into ascending order.
Cf. A163511.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A054429(n) = ((3<<#binary(n\2))-n-1);
    A163511(n) = if(!n,1,A005940(1+A054429(n)))
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    isA364495(n) = ((n%2)&&!(A163511(n)%n));

A364497 Numbers k such that k divides A243071(k).

Original entry on oeis.org

1, 3, 6, 12, 24, 43, 48, 86, 96, 172, 192, 344, 384, 688, 768, 1177, 1376, 1536, 2354, 2752, 3072, 3503, 4708, 5504, 6144, 7006, 9416, 11008, 12288, 14012, 18832, 22016, 24576, 28024, 37664, 44032, 49152, 49477, 56048, 75328, 88064, 98304, 98954, 112096, 150656, 169413, 176128, 196608, 197908, 224192, 301312, 338826
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2023

Keywords

Comments

If n is present, then 2*n is also present, and vice versa.
A007283 is included as a subsequence, because it gives the known fixed points of map n -> A163511(n).
Sequence A163511(A364496(.)) sorted into ascending order.

Crossrefs

Cf. A007283 (subsequence), A364498 (odd terms).
Cf. also A364295, A364494, A364496.

Programs

  • PARI
    A054429(n) = ((3<<#binary(n\2))-n-1); \\ From A054429
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A243071(n) = if(n<=2, n-1, A054429(A156552(n)));
    isA364497(n) = !(A243071(n)%n);

A364963 Odd numbers k such that k is a multiple of A163511(k).

Original entry on oeis.org

3, 16383, 536870895, 2147482623
Offset: 1

Views

Author

Antti Karttunen, Sep 02 2023

Keywords

Comments

Sequence A243071(A364498(n)), for n > 1, sorted into ascending order, therefore terms 151115727451794287099901, 60708402882054033466233184588234965832575213720379360039119137804340758912662765515 (and many others that do not fit in this space) are also present.
Consider the sequence 1 + 5*2^k (with k>=1): 11, 21, 41, 81, 161, 321, etc, (A083575(n) from n>=1), and compare to the sequence A163511(1 + 5*2^k): 25, 75, 225, 675, 2025, 6075, etc (= 3^(k-1) * 25). Clearly, the first sequence does not contain any multiples of 5, while all the terms in the second one are multiples of 25, and thus of 5 also.
Then consider sequences 1 + 2*(1 + 11*2^k): 47, 91, 179, 355, 707, 1411, etc., and A163511(1 + 2*(1 + 11*2^k)): 121, 605, 3025, 15125, 75625, 378125, etc. The terms in the first one are never multiples of 11, while the terms of second one are all multiples of 121, thus of 11 also.
Consider also sequences 1 + (2^k)*(1+2*11): 47, 93, 185, 369, 737, 1473, 2945, 5889, 11777, 23553, 47105, 94209, 188417, 376833, 753665, 1507329, etc, and 1 + (2^k)*(1+4*11): 91, 181, 361, 721, 1441, 2881, 5761, 11521, 23041, 46081, 92161, 184321, 368641, 737281, 1474561, 2949121, etc. The only time their terms are multiples of 11 is when k = 5, 15, 25, ..., 5 + 10*j, j>= 0, while for sequences A163511(1 + (2^k)*(1+2*11)): 121, 363, 1089, 3267, 9801, 29403, etc, and A163511(1 + (2^k)*(1+4*11)): 605, 1815, 5445, 16335, 49005, 147015, etc, all the terms are multiples of 121, thus of 11 also.
There are numerous other such correspondences that forbid the occurrence of factor x in n, when n is a member of a certain subset of odd numbers, while on the other hand, force the same factor x to be present in A163511(n), thus making it impossible that n were a multiple of A163511(n) in those cases. However, this sequence shows that such subsets do not completely cover all odd numbers. Similar observation applies to Doudna sequence (see A364547).

Examples

			        Term [in binary]                         Factorization         A163511(Term)
           3 [11]                                (prime)             -> 3
       16383 [11111111111111]                  = 3*43*127            -> 43
   536870895 [11111111111111111111111101111]   = 3*5*11*47*107*647   -> 1177 = 11*107
  2147482623 [1111111111111111111101111111111] = 3*11*13*31*113*1429 -> 3503 = 31*113
		

Crossrefs

Odd terms in A364496.
Cf. also A364495, A364547.

A364549 Odd numbers k that divide A005941(k).

Original entry on oeis.org

1, 3, 5, 97, 345, 549, 1093, 64621, 671515, 3280317, 8957089
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Sequence A005940(A364547(.)) sorted into ascending order.
Odd numbers k such that k divides 1+A156552(k).
The first ten terms factored:
1 (unity)
3 (prime)
5 (prime)
97 (prime)
345 = 3*5*23
549 = 3^2 * 61
1093 (prime)
64621 (prime)
671515 = 5*13*10331
3280317 = 3*79*13841.
Primes p present are those that occur as factors of 1 + 2^(A000720(p)-1).

Crossrefs

Odd terms in A364548.
Cf. also A364498, A364547, A364551.

Programs

  • PARI
    A005941(n) = { my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1])-1); res += (p * p2 * (2^(f[i, 2])-1)); p2 <<= f[i, 2]); (1+res) }; \\ (After David A. Corneth's program for A156552)
    isA364549(n) = ((n%2)&&!(A005941(n)%n));
    
  • Python
    from itertools import count, islice
    from sympy import primepi, factorint
    def A364549_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue+(startvalue&1^1),1),2):
            if not (sum(pow(2,i+int(primepi(p))-1,n) for i, p in enumerate(factorint(n, multiple=True)))+1) % n:
                yield n
    A364549_list = list(islice(A364549_gen(),8)) # Chai Wah Wu, Jul 28 2023

Extensions

a(11) from Chai Wah Wu, Jul 28 2023

A364965 Odd numbers k such that k is a multiple of A243071(k).

Original entry on oeis.org

3, 27, 315, 3003, 42757, 72765, 195195, 799425, 13873275, 18131225
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2023

Keywords

Crossrefs

Odd terms in A364964.
Sequence A163511(A364495(n)), for n>1, sorted into ascending order.
Cf. A243071.
Cf. also A364498, A364551.

Programs

  • PARI
    A243071(n) = if(n<=2, n-1, my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p*p2*(2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); ((3<<#binary(res\2))-res-1)); \\ (Combining programs given in A156552 and A054429)
    isA364965(n) = ((n>1)&&(n%2)&&!(n%A243071(n)));
Showing 1-6 of 6 results.