A366218
Number of convergent binary relations on [n] (A365534) that converge to an equivalence relation (A000110).
Original entry on oeis.org
1, 1, 4, 149, 26177, 18211032, 47135163595
Offset: 0
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, pp. 105-117.
- D. Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
-
nn = 13; B[n_] := 2^Binomial[n, 2] n!; primitive = Select[Import["https://oeis.org/A070322/b070322.txt", "Table"],
Length@# == 2 &][[All, 2]];pr[x_] := Total[primitive Table[x^i/i!, {i, 0, 6}]];Table[n!, {n, 0, nn}] CoefficientList[Series[Exp[pr[x] - 1], {x, 0, nn}], x]
A366252
Number of convergent binary relations on [n] (A365534) that converge to a quasi-order relation (A000798).
Original entry on oeis.org
1, 1, 6, 227, 37617, 23750562, 56091061929
Offset: 0
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
- D. Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
-
nn = 6; B[n_] := 2^Binomial[n, 2] n!; pr[x_] := Total[primitive Table[x^i/i!, {i, 0, 6}]];ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /.
Table[x^i ->x^i/2^Binomial[i, 2], {i, 0, nn}];Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[- (pr[x] - 1)]], {x, 0, nn}], x]
A334282
Number of properly colored labeled graphs on n nodes so that the color function is surjective onto {c_1,c_2,...,c_k} for some k, 1<=k<=n.
Original entry on oeis.org
1, 1, 5, 73, 2849, 277921, 65067905, 35545840513, 44384640206849, 124697899490480641, 778525887500557625345, 10693248499002776513697793, 320453350845793018626300755969, 20807125028666778079876193487790081, 2909872870574162514727072641529432735745
Offset: 0
-
b:= proc(n, k) option remember; `if`([n, k]=[0$2], 1,
add(binomial(n, r)*2^(r*(n-r))*b(r, k-1), r=0..n-1))
end:
a:= n-> add(b(n,k), k=0..n):
seq(a(n), n=0..15); # Alois P. Heinz, Apr 21 2020
-
nn = 15; e2[x_] := Sum[x^n/(n! 2^Binomial[n, 2]), {n, 0, nn}];
Table[n! 2^Binomial[n, 2], {n, 0, nn}] CoefficientList[Series[1/(1 - (e2[x] - 1)), {x, 0, nn}], x]
A365590
Number of n X n Boolean relation matrices such that each of the diagonal blocks of its Frobenius normal form is either a 1 block or a 0 block.
Original entry on oeis.org
1, 2, 13, 243, 11998, 1477763, 436610299, 300960642300, 474171878424571, 1680899431189662775, 13241419272545722904788, 229482664065433754849099977, 8677282817864146616211588609715, 710901968198799834001047038898570250
Offset: 0
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
-
nn = 13; B[n_] := n! 2^Binomial[n, 2]; ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /. Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}]; Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[-(Exp[x] - 1 + x)]], {x, 0, nn}], x]
A365593
Number of n X n Boolean relation matrices such that every block of its Frobenius normal form is either a 0 block or a 1 block.
Original entry on oeis.org
1, 2, 13, 219, 9322, 982243, 249233239, 148346645212, 202688186994599, 624913864623500599, 4289324010827093793808, 64841661094150427710360745, 2140002760057211517052090865983, 153082134018816602622335941790247946, 23590554099141037133024176892280338280237
Offset: 0
-
nn = 12; d[x_] :=Total[Cases[Import["https://oeis.org/A003024/b003024.txt",
"Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 41}]];
Range[0, nn]! CoefficientList[Series[d[Exp[x] - 1 + x], {x, 0, nn}],x]
A366194
Number of limit dominating binary relations on [n].
Original entry on oeis.org
1, 2, 13, 177, 4486
Offset: 0
Every idempotent relation (A121337) is limit dominating.
Every transitive relation (A006905) is limit dominating.
Every nilpotent relation (A003024) is limit dominating.
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
- D. Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
A366722
Number of limit dominated binary relations on [n].
Original entry on oeis.org
1, 2, 13, 399, 55894
Offset: 0
Every idempotent relation (A121337) is limit dominated.
Every dense relation (A355730) is limit dominated.
Every primitive relation (A070322) is limit dominated.
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, pp. 105-117.
- D. Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
A363834
Number of labeled digraphs (with self loops allowed) on [n] such that every strongly connected component of size at least 2 contains a vertex with a self loop.
Original entry on oeis.org
1, 2, 15, 452, 58023, 31083662, 66296957895, 554842541248592, 18340342731323665263, 2411916363098805776251322, 1266238008719333748929247025455, 2657054767893996575723268008873476172, 22295054304671836968688374028608806896204023
Offset: 0
a(2) = 15 because there are 16 labeled digraphs with self loops on [2] and all of them are good except: [1->2,2->1].
-
nn = 12; B[n_] := 2^Binomial[n, 2] n!; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]]; sm[x_] := Total[Table[2^n - 1, {n, 1, Length[strong]}] strong Table[ x^i/i!, {i, 1, 58}]]; ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /.
Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}];Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[-(sm[x] + x)]], {x, 0, nn}], x]
A365547
Triangular array read by rows. T(n,k) is the number of convergent Boolean relation matrices on [n] containing exactly k strongly connected components, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 2, 0, 3, 12, 0, 139, 126, 200, 0, 25575, 17517, 9288, 8688, 0, 18077431, 8457840, 3545350, 1435920, 936992, 0, 47024942643, 14452288791, 4277647665, 1422744780, 485315280, 242016192
Offset: 0
Triangle begins ...
1;
0, 2;
0, 3, 12;
0, 139, 126, 200;
0, 25575, 17517, 9288, 8688;
0, 18077431, 8457840, 3545350, 1435920, 936992;
...
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
- G. Markowsky, Bounds on the index and period of a binary relation on a finite set, Semigroup Forum, Vol 13 (1977), 253-259.
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
- R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
- D. Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
-
nn = 6; B[n_] := n! 2^Binomial[n, 2]; primitive = Select[Import["https://oeis.org/A070322/b070322.txt", "Table"], Length@# == 2 &][[All, 2]]; pr[x_] := Total[primitive Table[x^i/i!, {i, 0, 6}]];
ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /. Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[-(y pr[x] - y + y x)]], {x, 0, nn}], {x, y}])[[i]], i], {i, 1, 7}] // Grid
A369397
Number of binary relations R on [n] such that the (unique) idempotent in {R,R^2,R^3,...} is an equivalence relation.
Original entry on oeis.org
1, 1, 5, 157, 26345, 18218521, 47136254765, 451286947588597, 16264532016440908625, 2253156851039460378774961, 1219026648017155982267265596885, 2601923405098893502520360223043594957, 22040885615442635622424409144799379027505465
Offset: 0
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
- S. Schwarz, On the semigroup of binary relations on a finite set , Czechoslovak Mathematical Journal, 1970.
Cf.
A366866 (binary relations R on [n] such that the (unique) idempotent in {R,R^2,R^3,...} is a quasiorder),
A365534,
A366218,
A365590,
A355612,
A365593,
A366252,
A366350,
A366218.
-
nn = 12; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]];
Table[n!, {n, 0, nn}] CoefficientList[Series[Exp [s[2 x] - x], {x, 0, nn}], x]
Showing 1-10 of 10 results.
Comments