cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A385972 The long legs of the triangles defined in A365577.

Original entry on oeis.org

4, 24, 480, 130560, 8589803520, 36893488138829168640, 680564733841876926889855726716117319680, 231584178474632390847141970017375815705859404597439251151988418800962722856960
Offset: 1

Views

Author

Keywords

Crossrefs

A385973 The hypotenuses of the triangles defined in A365577.

Original entry on oeis.org

5, 25, 481, 130561, 8589803521, 36893488138829168641, 680564733841876926889855726716117319681, 231584178474632390847141970017375815705859404597439251151988418800962722856961
Offset: 1

Views

Author

Keywords

Crossrefs

A377725 Length of the short leg of the unique primitive Pythagorean triple whose inradius is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

3, 15, 83, 479, 2787, 16239, 94643, 551615, 3215043, 18738639, 109216787, 636562079, 3710155683, 21624372015, 126036076403, 734592086399, 4281516441987, 24954506565519, 145445522951123, 847718631141215, 4940866263896163, 28797478952235759, 167844007449518387
Offset: 1

Views

Author

Keywords

Examples

			Triangles begin:
  n=1:      3,         4,         5;
  n=2:     15,       112,       113;
  n=3:     83,      3444,      3445;
  n=4:    479,    114720,    114721;
  ...
This sequence gives the first column.
		

Crossrefs

Cf. A002315, A377016, A377017, A377726, A385977 (long leg).

Formula

a(n) = 2*A002315(n) + 1.

A053630 Pythagorean spiral: a(n-1), a(n)-1 and a(n) are sides of a right triangle.

Original entry on oeis.org

3, 5, 13, 85, 3613, 6526885, 21300113901613, 226847426110843688722000885, 25729877366557343481074291996721923093306518970391613
Offset: 1

Views

Author

Henry Bottomley, Mar 21 2000

Keywords

Comments

Least prime factors of a(n): 3, 5, 13, 5, 3613, 5, 233, 5, 3169, 5, 101, 5, 29, 5, 695838629, 5, 1217, 5, 2557, 5, 101, 5, 769, 5. - Zak Seidov, Nov 11 2013

Examples

			a(3)=13 because 5,12,13 is a Pythagorean triple and a(2)=5.
		

References

  • R. Gelca and T. Andreescu, Putnam and Beyond, Springer 2007, p. 121.

Crossrefs

See also A018928, A180313 and A239381 for similar sequences with a(n) a leg and a(n+1) the hypotenuse of a Pythagorean triangle.
Cf. A077125, A117191 (4^(1/Pi)).

Programs

  • Maple
    A:= proc(n) option remember; (procname(n-1)^2+1)/2 end proc: A(1):= 3:
    seq(A(n),n=1..10); # Robert Israel, Jul 14 2014
  • Mathematica
    NestList[(#^2+1)/2&,3,10] (* Harvey P. Dale, Sep 15 2011 *)
  • PARI
    {a(n) = if( n>1, (a(n-1)^2 + 1) / 2, 3)}; /* Michael Somos, May 15 2011 */

Formula

a(1) = 3, a(n) = (a(n-1)^2 + 1)/2 for n > 1.
a(n) = 2*A000058(n)-1 = A053631(n)+1 = floor(2 * 1.597910218031873...^(2^n)). Constructing the spiral as a sequence of triangles with one vertex at the origin, then for large n the other vertices are close to lying on the doubly logarithmic spiral r = 2*2.228918357655...^(1.5546822754821...^theta) where theta(n) = n*Pi/2 - 1.215918200344... and 1.5546822754821... = 4^(1/Pi).
a(1) = 3, a(n+1) = (1/4)*((a(n)-1)^2 + (a(n)+1)^2). - Amarnath Murthy, Aug 17 2005
a(n)^2 - (a(n)-1)^2 = a(n-1)^2, so 2*a(n)-1 = a(n-1)^2 (see the first formula). - Thomas Ordowski, Jul 13 2014
a(n) = (A006892(n+2) + 3)/2. - Thomas Ordowski, Jul 14 2014
a(n)^2 = A006892(n+3) + 2. - Thomas Ordowski, Jul 19 2014

Extensions

Corrected and extended by James Sellers, Mar 22 2000

A378395 Sequence of primitive Pythagorean triples beginning with the triple (3,4,5), with each subsequent triple having as its inradius the hypotenuse of the previous triple, and with the long leg and the hypotenuse of each triple being consecutive natural numbers.

Original entry on oeis.org

3, 4, 5, 11, 60, 61, 123, 7564, 7565, 15131, 114473580, 114473581, 228947163, 26208401722874284, 26208401722874285, 52416803445748571, 1373760641735119632984407274271020, 1373760641735119632984407274271021
Offset: 1

Views

Author

Keywords

Comments

The only Pythagorean triple whose inradius is equal to r and such that its long leg and its hypotenuse are consecutive is (2r+1,2r^2+2r,2r^2+2r+1).

Examples

			Triples begin:
  3, 4, 5;
  11, 60, 61;
  123, 7564, 7565;
  15131, 114473580, 11447358;
...
		

References

  • J. M. Blanco Casado, J. M. Sánchez Muñoz, and M. A. Pérez García-Ortega, El Libro de las Ternas Pitagóricas, Preprint 2024.

Crossrefs

Cf. A102847 (short leg), A365577.

Programs

  • Mathematica
    {a0,b0,c0}={3,4,5};f[n_]:=Module[{fn0=2c0+1,fn1=((2c0+1)^2+1)/2},Do[{fn0,fn1}={2fn1+1,((2fn1+1)^2+1)/2},{n}];fn0];t[n_]:={f[n-1],(f[n-1]^2-1)/2,(f[n-1]^2+1)/2};ternas={a0,b0,c0};For[i=1,i<=6,i++,ternas=Join[ternas,t[i]]];ternas

A379506 Sequence of primitive Pythagorean triples beginning with the triple (3,4,5), with each subsequent triple having as its inradius the semiperimeter of the previous triple, and with the long leg and the hypotenuse of each triple being consecutive natural numbers.

Original entry on oeis.org

3, 4, 5, 13, 84, 85, 183, 16744, 16745, 33673, 566935464, 566935465, 1133904603, 642869824352293804, 642869824352293805, 1285739649838492213, 826563223583404284483387832630818684, 826563223583404284483387832630818685
Offset: 1

Views

Author

Keywords

Comments

The only Pythagorean triple whose inradius is equal to r and such that its long leg and its hypotenuse are consecutive is (2r+1,2r^2+2r,2r^2+2r+1).

Examples

			Triples begin:
  3, 4, 5;
  13, 84, 85;
  183, 16744, 16745;
  33673, 566935464, 566935465;
		

Crossrefs

Cf. A002065 (short leg), A378395, A365577, A378963

Programs

  • Mathematica
    {a0,b0,c0}={3,4,5};f[n_]:= Module[{fn0=a0+b0+c0+1,fn1=((a0+b0+c0+1)^2+1)/2},Do[{fn0,fn1}={2fn1+fn0,((2fn1+fn0)^2+1)/2},{n}];fn0];t[n_]:={f[n-1],(f[n-1]^2-1)/2,(f[n 1]^2+1)/2};ternas={a0,b0,c0};For[i=1,i<=6,i++,ternas=Join[ternas,t[i]]];ternas

A378963 Sequence of primitive Pythagorean triples beginning with the triple (3,4,5), with each subsequent triple having as its inradius the short leg of the previous triple, and with the long leg and the hypotenuse of each triple being consecutive natural numbers.

Original entry on oeis.org

3, 4, 5, 7, 24, 25, 15, 112, 113, 31, 480, 481, 63, 1984, 1985, 127, 8064, 8065, 255, 32512, 32513, 511, 130560, 130561, 1023, 523264, 523265, 2047, 2095104, 2095105, 4095, 8384512, 8384513, 8191, 33546240, 33546241, 16383, 134201344, 134201345
Offset: 1

Views

Author

Keywords

Comments

The only Pythagorean triple whose inradius is equal to r and such that its long leg and its hypotenuse are consecutive is (2r+1,2r^2+2r,2r^2+2r+1).

Examples

			Triples begin:
  3, 4, 5;
  7, 24, 25;
  15, 112, 113;
  31, 480, 481;
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz, and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.

Crossrefs

Cf. A000225 (short leg), A092440 (hypotenuse), A378395, A365577.

Programs

  • Mathematica
    a=Table[2^(n+1)-1,{n,1,13}];Apply[Join,Map[{#,(#^2-1)/2,(#^2+1)/2}&,a]]

A380299 Sequence of primitive Pythagorean triples beginning with the triple (3,4,5), with each subsequent triple having as its inradius the area of the previous triple, and with the long leg and the hypotenuse of each triple being consecutive natural numbers.

Original entry on oeis.org

3, 4, 5, 13, 84, 85, 1093, 597324, 597325, 652875133, 213122969644883844, 213122969644883845, 139142687152258502421051253, 9680343693975641657052402486887446135645084826435004, 9680343693975641657052402486887446135645084826435005
Offset: 1

Views

Author

Keywords

Comments

The only Pythagorean triple whose inradius is equal to r and such that its long leg and its hypotenuse are consecutive is (2r+1,2r^2+2r,2r^2+2r+1).

Examples

			Triples begin:
 3, 4, 5;
 13, 84, 85;
 1093, 597324, 597325;
 652875133, 213122969644883844, 213122969644883845;
		

References

  • El Libro de las Ternas Pitagóricas, Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz y José Miguel Blanco Casado, Preprint, 2025.

Crossrefs

Programs

  • Mathematica
    {a0,b0,c0}={3,4,5};f[n_]:=Module[{fn0=a0 b0+1,fn1=((a0 b0+1)^2-1)/2},Do[{fn0,fn1}={fn1 fn0+1,((fn1 fn0+1)^2-1)/2},{n}];fn0];t[n_]:= {f[n-1],(f[n-1]^2-1)/2,(f[n-1]^2+1)/2};ternas={a0,b0,c0};For[i=1,i<=5,i++,ternas=Join[ternas,t[i]]];ternas

Formula

For n >= 1, a(3*n+1) = a(3*n-2)*a(3*n-1)+1, a(3*n-1) = (a(3*n-2)^2-1)/2, and a(3*n) = a(3*n-1)+1. - Pontus von Brömssen, Feb 04 2025
Showing 1-8 of 8 results.