cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 693 results. Next

A249383 Smallest odd prime number Q such that Q*2^P-1 is also prime with P Mersenne prime exponent A000043(n).

Original entry on oeis.org

3, 3, 7, 3, 31, 7, 61, 43, 79, 19, 739, 103, 2707, 4513, 139, 13, 4027, 28027, 14029, 87151, 11257, 8677, 122449, 104161, 113287, 216211, 150097, 862009, 876721, 414949, 4590451, 1391281
Offset: 1

Views

Author

Pierre CAMI, Oct 27 2014

Keywords

Comments

a(32) is a 227838-digit certified prime.
Does a(n) exist for each n? - Charles R Greathouse IV, Oct 28 2014

Crossrefs

Programs

  • PARI
    lista(nn) = {vmp = readvec("b000043.txt"); for (n=1, nn, k=2; while(!isprime(prime(k)*2^vmp[n]-1), k++); print1(prime(k), ", "););} \\ Michel Marcus, Oct 27 2014

A249384 Smallest odd prime number Q such that Q*2^P+1 is also prime, where P is a Mersenne prime exponent A000043(n).

Original entry on oeis.org

3, 5, 3, 5, 5, 53, 11, 239, 53, 191, 1229, 5, 233, 347, 1367, 9767, 2063, 89, 14009, 3329, 19991, 50849, 2711, 337871, 46301, 2543, 413093, 1157111, 615161, 1138649, 3778427
Offset: 1

Views

Author

Pierre CAMI, Oct 27 2014

Keywords

Crossrefs

Programs

  • PARI
    lista(nn) = {vmp = readvec("b000043.txt"); for (n=1, nn, k=2; while(!isprime(prime(k)*2^vmp[n]+1), k++); print1(prime(k), ", "););} \\ Michel Marcus, Oct 27 2014

A253027 Smallest odd number k>1 such that k*2^A000043(n)+1 is a prime number.

Original entry on oeis.org

3, 5, 3, 5, 5, 9, 11, 35, 53, 51, 105, 5, 233, 347, 125, 369, 2063, 89, 4715, 1145, 885, 4839, 2711, 30611, 5859, 2543, 21509, 114071, 309, 60191, 524489, 33305, 306363, 987537, 509765
Offset: 1

Views

Author

Pierre CAMI, Dec 26 2014

Keywords

Examples

			3*2^2+1=13 prime so a(1)=3 as A000043(1)=2.
3*2^3+1=25 composite, 5*2^3+1=41 prime so a(2)=5 as A000043(2)=3.
3*2^5+1=97 prime so a(3)=3 as A000043(3)=5.
		

Crossrefs

Programs

  • Mathematica
    a253027[n_] :=
    Block[{k, t = Select[Prime[Range[n]], PrimeQ[2^# - 1] &], l},
      l = Length[t];
    Table[k = 3; While[! PrimeQ[k*2^t[[i]] + 1], k = k + 2]; k, {i, l}]]; a253027[600] (* Michael De Vlieger, Dec 26 2014 *)
  • PARI
    lista(nn) = {forprime (n=1, nn, if (isprime(2^n-1), k=3; while (!isprime(k*2^n+1), k += 2); print1(k, ", ");););} \\ Michel Marcus, Dec 27 2014
  • PFGW
    Command pfgw64 -f -e1000000 in.txt
    in.txt file :
    ABC2 a$*2^756839+$b // {number_primes,$b,1}
    b: from 1 to 1
    a: from 1 to 1000000
    

Extensions

a(33)-a(35) from Pierre CAMI, Apr 06 2015

A059494 For odd p such that 2^p-1 is a prime (A000043), write 2^p-1 = x^2+3*y^2; sequence gives values of x.

Original entry on oeis.org

2, 2, 10, 46, 362, 298, 46162, 1505304098, 17376907720394, 9286834445316902, 9328321181472828398, 2107597973657165184339850860393713575649657317180489057212823189967494080057958, 22958222111004899714849436789827362390710508069726899926224050897274623732073762499062593658
Offset: 1

Views

Author

N. J. A. Sloane, Feb 05 2001

Keywords

Comments

Representing a given prime P=3k+1 as x^2+3y^2 amounts to finding the shortest vector in a 2-dimensional lattice, namely either of the primes above P in the ring Q(sqrt(-3)). For instance, if P = 2^521 - 1 then P = x^2 + 3y^2 where x,y are 2107597973657165184339850860393713575649657317180489057212823189967494080057958, 898670952308059000662208200339860406351380028634597445743368513219427297854627. - Noam D. Elkies, Jun 25 2001

Examples

			p=7: 127 = 10^2 + 3*3^2, so a(3) = 10.
		

References

  • F. Lemmermeyer, Reciprocity Laws From Euler to Eisenstein, Springer-Verlag, 2000, p. 59.

Crossrefs

Programs

  • PARI
    f(p, P,a,m)= P=2^p-1; a=lift(sqrt(Mod(-3,P))); m=[P,a;0,1]; (m*qflll(m,1))~[1,]
    for(n=1,11,print(abs(f([3,5,7,13,17,19,31,61,89,107,521][n])[1]))) \\ Joshua Zucker, May 23 2006

Extensions

More terms from Noam D. Elkies, Jun 25 2001
Corrected and extended by Joshua Zucker, May 23 2006

A059495 For odd p such that 2^p-1 is a prime (A000043), write 2^p-1 = x^2+3*y^2; sequence gives values of y.

Original entry on oeis.org

1, 3, 3, 45, 3, 381, 2349, 115329357, 10279641655875, 5033685952807971, 5263826472436016979, 898670952308059000662208200339860406351380028634597445743368513219427297854627, 1163046333059983884005407440923089001865672520479660324278034104804471332063117356524700189
Offset: 1

Views

Author

N. J. A. Sloane, Feb 05 2001

Keywords

Examples

			p=7: 127 = 10^2 + 3*3^2, so a(3) = 3.
		

References

  • F. Lemmermeyer, Reciprocity Laws From Euler to Eisenstein, Springer-Verlag, 2000, p. 59.

Crossrefs

Extensions

More terms from Joshua Zucker, May 23 2006

A099982 Bisection of A000043.

Original entry on oeis.org

2, 5, 13, 19, 61, 107, 521, 1279, 2281, 4253, 9689, 11213, 21701, 44497, 110503, 216091, 859433, 1398269, 3021377, 13466917, 24036583, 30402457, 37156667, 43112609
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    MersennePrimeExponent[Range[1, 48, 2]] (* Amiram Eldar, Oct 16 2024 *)

Formula

a(n) = A000043(2*n-1). - Amiram Eldar, Oct 16 2024

Extensions

Offset corrected and a(20)-a(24) added by Amiram Eldar, Oct 16 2024

A099983 Bisection of A000043.

Original entry on oeis.org

3, 7, 17, 31, 89, 127, 607, 2203, 3217, 4423, 9941, 19937, 23209, 86243, 132049, 756839, 1257787, 2976221, 6972593, 20996011, 25964951, 32582657, 42643801, 57885161
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    MersennePrimeExponent[Range[2, 48, 2]] (* Amiram Eldar, Oct 16 2024 *)

Formula

a(n) = A000043(2*n). - Amiram Eldar, Oct 16 2024

Extensions

Offset corrected and a(20)-a(24) added by Amiram Eldar, Oct 16 2024

A101416 Nearest k to j such that k*(2^j-1)-1 is prime where j=A000043(n) and 2^j-1 = Mersenne-prime(n) = A000668(n). If there are two k values equidistant from j, each of which produces a prime, the larger of the two gets added to the sequence.

Original entry on oeis.org

2, 2, 2, 6, 20, 14, 32, 90, 72, 80, 230, 80, 560, 740, 1542, 1782, 450, 828, 2562, 3936, 12474, 9288, 10224, 16022, 11088, 31034, 53972, 92372
Offset: 1

Views

Author

Pierre CAMI, Jan 16 2005

Keywords

Examples

			n=7, j=A000043(7)=19, A000668(7)=524287, then k=6 or k=32 are the nearest values to j which produce primes so we take the larger of the two k values for a(7)=32.
		

Crossrefs

Extensions

a(5)=20, a(20)=3936 corrected, other terms verified, a(27)-a(28) extended by Ray Chandler, Apr 16 2009

A107709 Least odd prime a(n) such that (a(n)*M(n))^2 + a(n)*M(n) - 1 is prime with M(n) = Mersenne-primes (A000043).

Original entry on oeis.org

3, 3, 3, 7, 43, 19, 13, 5, 571, 3, 137, 59, 3823, 2707, 6277, 1063, 4523, 631, 8209, 34537, 102329, 46399, 30323, 18803, 1063, 21019
Offset: 1

Views

Author

Pierre CAMI, Jun 10 2005

Keywords

Examples

			M(1)=2^2-1=3, (3*3)^2 + 3*3 -1 = 89 prime so a(1)=3
M(2)=2^3-1=7, (3*7)^2 + 3*7 -1 = 461 prime so a(2)=3
M(3)=2^5-1=31, (3*31)^2 + 3*31 -1 = 8741 prime so a(3)=3
M(4)=2^7-1=127,(7*127)^2 + 7*127 -1 = 791209 prime so a(4)=7
		

Crossrefs

Cf. A000043.

Extensions

More terms from Pierre CAMI, Nov 21 2011

A113656 Digits of successive exponents of Mersenne primes (see A000043).

Original entry on oeis.org

2, 3, 5, 7, 1, 3, 1, 7, 1, 9, 3, 1, 6, 1, 8, 9, 1, 0, 7, 1, 2, 7, 5, 2, 1, 6, 0, 7, 1, 2, 7, 9, 2, 2, 0, 3, 2, 2, 8, 1, 3, 2, 1, 7, 4, 2, 5, 3, 4, 4, 2, 3, 9, 6, 8, 9, 9, 9, 4, 1, 1, 1, 2, 1, 3, 1, 9, 9, 3, 7, 2, 1, 7, 0, 1, 2, 3, 2, 0, 9, 4, 4, 4, 9, 7, 8, 6, 2, 4, 3, 1, 1, 0, 5, 0, 3, 1, 3, 2
Offset: 1

Views

Author

N. J. A. Sloane, following a suggestion of Bill McEachen, Jan 18 2006

Keywords

Crossrefs

Cf. A000043.

Programs

  • Mathematica
    Flatten[IntegerDigits/@MersennePrimeExponent[Range[30]]] (* Harvey P. Dale, Aug 05 2021 *)
Previous Showing 41-50 of 693 results. Next