cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 54 results. Next

A096171 Numbers k such that k^4+1 is an odd semiprime.

Original entry on oeis.org

8, 10, 12, 14, 18, 22, 26, 30, 32, 36, 38, 40, 42, 50, 52, 58, 62, 68, 72, 78, 84, 86, 92, 94, 98, 100, 102, 108, 112, 114, 116, 120, 122, 124, 128, 130, 138, 146, 148, 152, 158, 162, 166, 170, 172, 176, 184, 186, 200, 212, 214, 216, 218, 222, 224, 226, 234, 250, 252
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Examples

			a(1)=8 because 8^4 + 1 = 4097 = 17*241;
a(2)=10: 10^4 + 1 = 10001 = 73*137.
		

Crossrefs

Cf. A000068 (n^4+1 is prime), A037896 (primes of the form k^4+1), A096169 ((n^4+1)/2 is prime), A069170 (primes of the form (k^4+1)/2), A096172 (largest prime factor of n^4+1), A046388.

Programs

  • Mathematica
    Select[Range[2,300,2],PrimeOmega[#^4+1]==2&] (* Harvey P. Dale, Dec 25 2021 *)
  • PARI
    isA096171(n) = {local(m);m=n^4+1;(m%2==1)&&(bigomega(m)==2)} \\ Michael B. Porter, Feb 02 2010

A233549 Number of ways to write n = p + q (q > 0) with p and (phi(p)*phi(q))^4 + 1 prime, where phi(.) is Euler's totient function (A000010).

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 3, 2, 3, 2, 1, 3, 1, 4, 3, 3, 4, 4, 6, 1, 1, 1, 4, 1, 2, 2, 4, 4, 1, 6, 7, 3, 4, 3, 4, 3, 3, 5, 2, 3, 5, 3, 1, 3, 5, 3, 3, 5, 6, 4, 4, 5, 4, 3, 4, 6, 4, 4, 3, 4, 5, 4, 2, 2, 4, 3, 6, 1, 4, 2, 8, 9, 2, 5, 5, 4, 2, 3, 4, 3, 6, 1, 7, 5, 8, 5, 4, 4, 4, 10, 10, 6, 4, 8, 4, 3, 4, 6, 6, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 12 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 2.
(ii) If n > 2 is not equal to 26, then there is a prime p < n with (phi(p)*phi(n-p))^2 + 1 prime.
(iii) If n > 3 is different from 9 and 16, then there is a prime p < n with ((p+1)*phi(n-p))^2 + 1 prime.
Part (i) of the conjecture implies that there are infinitely many primes of the form x^4 + 1. We have verified it for n up to 10^7.

Examples

			a(11) = 1 since 11 = 2 + 9 with 2 and (phi(2)*phi(9))^4 + 1 = 6^4 + 1 = 1297 both prime.
a(13) = 1 since 13 = 5 + 8 with 5 and (phi(5)*phi(8))^4 + 1 = 16^4 + 1 = 65537 both prime.
a(258) = 1 since 258 = 167 + 91 with 167 and (phi(167)*phi(91))^4 + 1 = (166*72)^4 + 1 = 20406209352892417 both prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[((Prime[k]-1)*EulerPhi[n-Prime[k]])^4+1],1,0],{k,1,PrimePi[n-1]}]
    Table[a[n],{n,1,100}]

A070020 At these values of k the first, 2nd and 3rd cyclotomic polynomials all give prime numbers.

Original entry on oeis.org

6, 12, 138, 150, 192, 348, 642, 1020, 1092, 1230, 1620, 1788, 1932, 2112, 2142, 2238, 2658, 2688, 2730, 3330, 3540, 3918, 4002, 4158, 5010, 5640, 6090, 6450, 6552, 6702, 7950, 8088, 9000, 9042, 9240, 9462, 9768, 10008, 10092, 10272, 10302, 10332
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Numbers k such that k-1, k+1 and k^2+k+1 are all primes.

Examples

			For k = 6: 5, 7 and 43 are prime values of the first 3 cyclotomic polynomials.
		

Crossrefs

Programs

  • Mathematica
    psQ[n_]:=And@@PrimeQ[{n-1,n+1,n^2+n+1}]; Select[Range[11000],psQ] (* Harvey P. Dale, Nov 05 2011 *)
    Select[Range[10500], AllTrue[Cyclotomic[Range@ 3, #], PrimeQ] &] (* Michael De Vlieger, Dec 08 2018 *)
  • PARI
    is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+k+1); \\ Amiram Eldar, Sep 24 2024

A127871 Numbers n such that n^4+1 and n^4+3 are twin primes.

Original entry on oeis.org

2, 16, 28, 34, 82, 118, 266, 296, 328, 436, 778, 1126, 1238, 1280, 1486, 1496, 1612, 1952, 2102, 2192, 2312, 2414, 2578, 2690, 2770, 2834, 2872, 3100, 3410, 3550, 3620, 3752, 4012, 4016, 4240, 4264, 4450, 4772, 5084, 5458, 5732, 5798, 5864, 6704, 7208
Offset: 1

Views

Author

Zak Seidov, Apr 05 2007

Keywords

Comments

Intersection of A000068 and A125259.
Smallest k such that a(k+1) = a(k) + 2 is 364. - Altug Alkan, May 15 2018

Crossrefs

Programs

  • Maple
    select(t -> isprime(t^4+1) and isprime(t^4+3), [seq(i,i=2..10^4,2)]); # Robert Israel, May 14 2018
  • Mathematica
    Select[Range[0,200000,2],PrimeQ[ #^4+1]&&PrimeQ[ #^4+3]&]
    Select[Range[7300],AllTrue[#^4+{1,3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 18 2019 *)
  • PARI
    isok(n) = isprime(n^4+1) && isprime(n^4+3); \\ Michel Marcus, May 15 2018

A070042 At these values of k the 1st, 2nd, 3rd, 4th and 5th cyclotomic polynomials all give prime numbers.

Original entry on oeis.org

1068630, 1441590, 1867950, 3429300, 4084230, 5651730, 6322890, 6770610, 7158630, 7804830, 9437760, 9624270, 13625850, 23194860, 25848840, 26588520, 28714950, 29451840, 32984430, 33650580, 36500910, 38177130, 42856590, 49531020, 50016540, 50222070, 52083330, 54637590
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Numbers k such that C1(k) = k-1, C2(k) = k+1, C3(k) = k^2+k+1, C4(k) = k^2+1 and C5(k) = k^4+k^3+k^2+k+1 are all primes.

Examples

			For k = 1068630: the 1st, 2nd, 3rd, 4th and 5th cyclotomic polynomials give a quintet of primes: {1068629, 1068631, 1141971145531, 1141970076901, 1304096876879617162402531}.
		

Crossrefs

Programs

  • PARI
    is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1) && isprime(k^2+k+1) && isprime(k^4+k^3+k^2+k+1) ; \\ Amiram Eldar, Sep 24 2024

Extensions

More terms from Don Reble, May 11 2002
a(24)-a(28) from Amiram Eldar, Sep 24 2024

A096170 Primes of the form (k^4 + 1)/2.

Original entry on oeis.org

41, 313, 1201, 7321, 14281, 41761, 97241, 139921, 353641, 750313, 1156721, 5278001, 6922921, 8925313, 12705841, 14199121, 21523361, 56275441, 60775313, 81523681, 87450313, 100266961, 138461441, 273990641, 370600313, 407865361
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Comments

Note that k must be odd. Terms of primitive Pythagorean triples: (k^2, (k^4-1)/2, (k^4+1)/2).

Examples

			a(1)=41 because (3^4 + 1)/2 = 82/2 = 41 is prime.
		

Crossrefs

Cf. A096169 (n^4+1)/2 is prime, A000068 n^4+1 is prime, A037896 primes of the form n^4+1, A096171 n^4+1 is an odd semiprime, A096172 largest prime factor of n^4+1.

Programs

  • Magma
    [ a: n in [0..2500] | IsPrime(a) where a is ((n^4+1) div 2) ]; // Vincenzo Librandi, Apr 15 2011
    
  • Mathematica
    Select[(Range[200]^4+1)/2,PrimeQ] (* Harvey P. Dale, Mar 09 2013 *)
  • PARI
    list(lim)=my(v=List(),t); forstep(n=3,sqrtnint(lim\1*2-1,4),2, if(isprime(t=(n^4+1)/2), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017

Extensions

Name edited by Zak Seidov, Apr 14 2011

A217795 Numbers n such that n^4+1 and (n+2)^4+1 are both prime.

Original entry on oeis.org

2, 4, 46, 54, 80, 88, 140, 276, 492, 554, 566, 582, 730, 758, 786, 798, 912, 928, 1142, 1150, 1200, 1236, 1404, 1540, 1552, 1610, 1644, 1650, 1932, 1942, 2044, 2102, 2204, 2222, 2224, 2238, 2254, 2374, 2436, 2486, 2510, 2640, 2674, 2698, 2732, 2734, 3244, 3286
Offset: 1

Views

Author

Michel Lagneau, Oct 12 2012

Keywords

Examples

			4 is in the sequence because 4^4+1 = 257 and 6^4+1 = 1297 are both prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..3300] | IsPrime(n^4 + 1) and IsPrime((n + 2)^4 + 1)]; // Vincenzo Librandi, Oct 13 2012
  • Maple
    for n from 0 by 2 to 3500 do: if type(n^4+1,prime)=true and type((n+2)^4+1,prime)=true then printf(`%d, `,n):else fi:od:
  • Mathematica
    lst={}; Do[p=n^4+1; q=(n+2)^4+1;If[PrimeQ[p] && PrimeQ[q], AppendTo[lst, n]], {n, 0, 3000}];lst
    Select[Range[3500],AllTrue[{#^4+1,(#+2)^4+1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 29 2015 *)

A230261 Number of ways to write 2*n - 1 = p + q with p, p + 6 and q^4 + 1 all prime, where q is a positive integer.

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 4, 3, 3, 4, 4, 3, 3, 4, 1, 5, 4, 3, 5, 5, 5, 4, 6, 4, 5, 5, 3, 3, 5, 4, 4, 2, 6, 8, 5, 4, 6, 7, 5, 5, 7, 6, 5, 7, 4, 6, 6, 3, 6, 5, 7, 6, 4, 6, 7, 6, 2, 7, 6, 2, 5, 5, 3, 7, 7, 5, 7, 9, 6, 7, 4, 6, 6, 4, 3, 9, 7, 4, 9, 9, 6, 5, 10, 8, 5, 9, 6, 7, 8, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 14 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 3. Also, any odd number greater than 6 can be written as p + q (q > 0) with p, p + 6 and q^2 + 1 all prime.
(ii) Any integer n > 1 can be written as x + y (x, y > 0) with x^4 + 1 and y^2 + y + 1 both prime.
(iii) Each integer n > 2 can be expressed as x + y (x, y > 0) with 4*x^2 + 3 and 4*y^2 -3 both prime.
Either of parts (i) and (ii) implies that there are infinitely many primes of the form x^4 + 1.

Examples

			a(6) = 2 since 2*6-1 = 5 + 6 = 7 + 4, and 5, 5+6 = 11, 7, 7+6 = 13, 6^4+1 = 1297 and 4^4+1 = 257 are all prime.
a(25) = 1 since 2*25-1 = 47 + 2, and 47, 47+6 = 53, 2^4+1 = 17 are all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[Prime[i]+6]&&PrimeQ[(2n-1-Prime[i])^4+1],1,0],{i,1,PrimePi[2n-2]}]
    Table[a[n],{n,1,100}]
  • PARI
    a(n)=my(s,p=5,q=7);forprime(r=11,2*n+4,if(r-p==6&&isprime((2*n-1-p)^4+1),s++); if(r-q==6&&isprime((2*n-1-q)^4+1),s++); p=q;q=r);s \\ Charles R Greathouse IV, Oct 14 2013

A250175 Numbers n such that Phi_15(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 11, 17, 23, 43, 46, 52, 53, 61, 62, 78, 84, 88, 89, 92, 99, 108, 123, 124, 141, 146, 154, 156, 158, 163, 170, 171, 182, 187, 202, 217, 219, 221, 229, 233, 238, 248, 249, 253, 264, 274, 275, 278, 283, 285, 287, 291, 296, 302, 309, 314, 315, 322, 325, 342, 346, 353, 356, 366, 368, 372, 377, 380, 384, 394, 404, 406, 411, 420, 425
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494(6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862(11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989(18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075(31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078(43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315(64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441(81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442(243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530(65536).

Programs

  • Mathematica
    Select[Range[600], PrimeQ[Cyclotomic[15, #]] &] (* Vincenzo Librandi, Jan 16 2015 *)
  • PARI
    isok(n) = isprime(polcyclo(15, n)); \\ Michel Marcus, Jan 16 2015

Extensions

More terms from Vincenzo Librandi, Jan 16 2015

A250176 Numbers n such that Phi_20(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

4, 9, 11, 16, 19, 26, 34, 45, 54, 70, 86, 91, 96, 101, 105, 109, 110, 119, 120, 126, 129, 139, 141, 149, 171, 181, 190, 195, 215, 229, 260, 276, 299, 305, 309, 311, 314, 319, 334, 339, 369, 375, 414, 420, 425, 444, 470, 479, 485, 506, 519, 534, 540, 550
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494(6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862(11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989(18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075(31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078(43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315(64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441(81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442(243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530(65536).

Programs

  • Mathematica
    Select[Range[600], PrimeQ[Cyclotomic[20, #]] &] (* Vincenzo Librandi, Jan 16 2015 *)
  • PARI
    isok(n) = isprime(polcyclo(20, n)); \\ Michel Marcus, Sep 29 2015

Extensions

More terms from Vincenzo Librandi, Jan 16 2015
Previous Showing 31-40 of 54 results. Next