cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 401 results. Next

A356964 Replace 2^k in binary expansion of n with tribonacci(k+3) (where tribonacci corresponds to A000073).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 13, 14, 15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 24, 25, 26, 27, 24, 25, 26, 27, 28, 29, 30, 31, 31, 32, 33, 34, 35, 36, 37, 38, 37, 38, 39, 40, 41, 42, 43, 44, 44, 45, 46, 47, 48, 49, 50, 51, 44, 45, 46, 47
Offset: 0

Views

Author

Rémy Sigrist, Sep 06 2022

Keywords

Comments

This sequence is to tribonacci numbers (A000073) what A022290 is to Fibonacci numbers (A000045).
For any k >= 0, k appears A117546(k) times in this sequence.

Examples

			For n = 9:
- 9 = 2^3 + 2^0,
- so a(9) = A000073(3+3) + A000073(0+3) = 7 + 1 = 8.
		

Crossrefs

Programs

  • PARI
    a(n) = { my (v=0, k); while (n, n-=2^k=valuation(n,2); v+=([0,1,0; 0,0,1; 1,1,1]^(3+k))[2,1]); return (v); }
    
  • Python
    def A356964(n):
        a, b, c, s = 1,2,4,0
        for i in bin(n)[-1:1:-1]:
            s += int(i)*a
            a, b, c = b, c, a+b+c
        return s # Chai Wah Wu, Sep 10 2022

Formula

a(A003726(n+1)) = n.
a(A003796(n+1)) = n.

A359876 a(n) is the smallest tribonacci number (A000073) with exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

1, 2, 4, 44, 24, 5768, 504, 10562230626642, 3136, 7046319384, 615693474, 53798080, 4680045560037375, 35574238430251050319992, 4659412488735286161146176, 23523635785731871586396890786299881280, 79932289960699059086717998848
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2023

Keywords

Examples

			a(5) = 5768, because 5768 is a tribonacci number with 5 prime factors (counted with multiplicity) {2, 2, 2, 7, 103} and this is the smallest such number.
		

Crossrefs

A359878 a(n) is the index of the smallest tribonacci number (A000073) with exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

2, 4, 5, 9, 8, 17, 13, 52, 16, 40, 36, 32, 62, 88, 96, 144, 112, 221, 256, 208, 400, 192
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2023

Keywords

Crossrefs

Extensions

a(17)-a(21) from Daniel Suteu, Jan 18 2023

A386236 Ratio of the period and the reduced period of the Fibonacci 3-step sequence A000073 mod n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 3, 3, 1, 3, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 3, 3, 1, 3, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 3, 1, 1, 3, 3, 3, 3, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 3, 3, 3
Offset: 1

Views

Author

Peter Munn, Jul 16 2025

Keywords

Comments

The period is A046738(n) and the reduced period is A046737(n).
See also the information in A154754 and A046737.

Crossrefs

The equivalent sequence for Fibonacci numbers is A001176.
Cf. A060839 (differs first at n=31), A154754 (restriction to prime indices).

Formula

a(n) = A046738(n)/A046737(n).

A074581 a(n) = T(3n+1), where T(n) are tribonacci numbers A000073.

Original entry on oeis.org

0, 2, 13, 81, 504, 3136, 19513, 121415, 755476, 4700770, 29249425, 181997601, 1132436852, 7046319384, 43844049029, 272809183135, 1697490356184, 10562230626642, 65720971788709, 408933139743937, 2544489349890656
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 24 2002

Keywords

Comments

In general, the trisection of a third-order linear recurrence with signature (x,y,z) will result in a third-order recurrence with signature (x^3 + 3*x*y + 3*z, -3*x*y*z + y^3 - 3*z^2, z^3). - Gary Detlefs, May 29 2024

Crossrefs

Cf. A000073.

Programs

  • Mathematica
    CoefficientList[Series[(2*x-x^2)/(1-7*x+5*x^2-x^3), {x, 0, 40}], x]
    LinearRecurrence[{7,-5,1},{0,2,13},30] (* Harvey P. Dale, Jul 22 2021 *)

Formula

a(n) = 7*a(n-1) - 5*a(n-2) + a(n-3), a(0)=0, a(1)=2, a(2)=13.
G.f.: (2*x - x^2)/(1 - 7*x + 5*x^2 - x^3). [corrected by Nguyen Tuan Anh, Jan 10 2025]

Extensions

Definition corrected by David Scambler, Oct 18 2010

A075536 a(n) = ((1+(-1)^n)*T(n+1) + (1-(-1)^n)*S(n))/2, where T(n) = tribonacci numbers A000073, S(n) = generalized tribonacci numbers A001644.

Original entry on oeis.org

0, 1, 1, 7, 4, 21, 13, 71, 44, 241, 149, 815, 504, 2757, 1705, 9327, 5768, 31553, 19513, 106743, 66012, 361109, 223317, 1221623, 755476, 4132721, 2555757, 13980895, 8646064, 47297029, 29249425, 160004703, 98950096, 541292033, 334745777
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 23 2002

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+x+4*x^2+x^3-x^4)/(1-3*x^2-x^4-x^6) )); // G. C. Greubel, Apr 21 2019
    
  • Maple
    A075536 := proc(n)
        if type(n,'even') then
            A000073(n+1) ;
        else
            A001644(n) ;
        end if;
    end proc:
    seq(A075536(n),n=0..80) ; # R. J. Mathar, Aug 05 2021
  • Mathematica
    CoefficientList[Series[(x+x^2+4x^3+x^4-x^5)/(1-3x^2-x^4-x^6), {x, 0, 40}], x]
    LinearRecurrence[{0,3,0,1,0,1},{0,1,1,7,4,21},40] (* Harvey P. Dale, Jul 10 2012 *)
  • PARI
    my(x='x+O('x^40)); concat([0], Vec(x*(1+x+4*x^2+x^3-x^4)/(1-3*x^2-x^4-x^6))) \\ G. C. Greubel, Apr 21 2019
    
  • Sage
    (x*(1+x+4*x^2+x^3-x^4)/(1-3*x^2-x^4-x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019

Formula

a(2n) = A073717(n) = A000073(2n+1).
a(2n+1) = A001644(2n+1).
a(n) = 3*a(n-2) + a(n-4) + a(n-6), a(0)=0, a(1)=1, a(2)=1, a(3)=7, a(4)=4, a(5)=21.
O.g.f.: x*(1 + x + 4*x^2 + x^3 - x^4)/(1 - 3*x^2 - x^4 - x^6).

Extensions

Index in definition corrected. - R. J. Mathar, Aug 05 2021

A112618 Let T(n) = A000073(n+1), n >= 1; a(n) = smallest k such that prime(n) divides T(k).

Original entry on oeis.org

3, 7, 14, 5, 8, 6, 28, 18, 29, 77, 14, 19, 35, 82, 29, 33, 64, 68, 100, 132, 31, 18, 270, 109, 19, 186, 13, 184, 105, 172, 586, 79, 11, 34, 10, 223, 71, 37, 41, 314, 100, 25, 72, 171, 382, 26, 83, 361, 34, 249, 36, 28, 506, 304, 54, 37, 177, 331, 61, 536, 777, 458, 30, 123
Offset: 1

Views

Author

T. D. Noe, Dec 05 2005

Keywords

Comments

Brenner proves that every prime divides some tribonacci number T(n). For the similar 3-step Lucas sequence A001644, there are primes (A106299) that do not divide any term.

Examples

			Sequence T(n) starts 1,1,2,4,7,13,24,44. For the primes 2,3,7,11,13, it is easy to see that a(1)=3, a(2)=7, a(4)=5, a(5)=8, a(6)=6.
		

Crossrefs

Equals A112312(n)-1.

Programs

  • Mathematica
    a[0]=0; a[1]=a[2]=1; a[n_]:=a[n]=a[n-1]+a[n-2]+a[n-3]; f[n_]:= Module[{k=2, p=Prime[n]}, While[Mod[a[k], p] != 0, k++ ]; k]; Array[f, 64] (* Robert G. Wilson v *)

Formula

a(n) = A112305(prime(n)).

A130594 Numbers which are both lucky (A000959) and tribonacci (A000073).

Original entry on oeis.org

1, 7, 13, 927, 1705, 10609
Offset: 1

Views

Author

Jonathan Vos Post, Jun 16 2007

Keywords

Comments

No other terms below 15902591. The next candidate is the odd tribonacci number 15902591. Is this also a lucky number? - Harvey P. Dale, Jul 12 2008
This is to tribonacci as A057589 is to the Fibonacci numbers.
a(7) >= 23837527729. - Kevin P. Thompson, Nov 24 2021

Examples

			a(6) = 10609 because it is lucky A000959(1182) and tribonacci A000073(18).
		

Crossrefs

A141579 Numbers k such that the arithmetic mean of the first k tribonacci numbers A000073 is an integer.

Original entry on oeis.org

1, 2, 47, 53, 94, 103, 106, 163, 199, 206, 257, 269, 311, 326, 397, 398, 401, 419, 421, 499, 514, 538, 587, 599, 617, 622, 683, 757, 773, 794, 802, 838, 842, 863, 883, 907, 911, 929, 991, 998, 1021, 1087, 1109, 1123, 1174, 1181, 1198, 1210, 1234, 1237, 1291
Offset: 1

Views

Author

R. J. Mathar, Aug 19 2008

Keywords

Comments

Numbers in this sequence but not in A140973 are 2021 and 2090 (but no others below 8400). - Emeric Deutsch, Aug 19 2008.

Crossrefs

Programs

  • Maple
    A000073 := proc(n) option remember ; if n <= 1 then 0 ; elif n =2 then 1 ; else procname(n-1)+procname(n-2)+procname(n-3) ; fi; end: A008937 := proc(n) option remember ; add(A000073(i),i=0..n+1) ; end: isA := proc(n) if n = 1 then RETURN(true) ; fi; if A008937(n-2) mod n = 0 then true; else false ; fi; end: for n from 1 to 2000 do if isA(n) then printf("%d,",n) ; fi; od ;
  • Mathematica
    Module[{nn=1300,tnos},tnos=LinearRecurrence[{1,1,1},{0,0,1},nn];Position[ Table[Mean[Take[tnos,n]],{n,nn}],?(IntegerQ[#]&)]]//Flatten (* _Harvey P. Dale, Oct 05 2020 *)

Formula

{k: k | A008937(k-2)}.

A153462 Triangle read by rows, = A000931(n-k+3) * (A000073 * 0^(n-k)).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 0, 4, 2, 1, 1, 2, 0, 7, 2, 2, 1, 2, 4, 0, 13, 3, 2, 2, 2, 4, 7, 0, 24, 4, 3, 2, 4, 4, 7, 13, 0, 44, 5, 4, 3, 4, 8, 7, 13, 24, 0, 81, 7, 5, 4, 6, 8, 14, 13, 24, 44, 0, 149, 9, 7, 5, 8, 12, 14, 26, 24, 44, 81, 0, 274
Offset: 3

Views

Author

Gary W. Adamson, Dec 27 2008

Keywords

Comments

An eigentriangle by rows, the Padovan sequence convolved with the tribonacci numbers.
Sum of n-th row terms = rightmost term of next row. Row sums = the tribonacci numbers, A000073.

Examples

			First few rows of the triangle =
   1;
   0, 1;
   1, 0, 1;
   1, 1, 0,  2;
   1, 1, 1,  0,  4;
   2, 1, 1,  2,  0,  7;
   2, 2, 1,  2,  4,  0, 13;
   3, 2, 2,  2,  4,  7,  0, 24;
   4, 3, 2,  4,  4,  7, 13,  0, 44;
   5, 4, 3,  4,  8,  7, 13, 24,  0, 81;
   7, 5, 4,  6,  8, 14, 13, 24, 44,  0, 149;
   9, 7, 5,  8, 12, 14, 26, 24, 44, 81,   0, 274;
  12, 9, 7, 10, 16, 21, 26, 48, 44, 81, 149,   0, 504;
  ...
Row 9 = (2, 2, 1, 2, 4, 0, 13) = termwise products of (1, 1, 1, 2, 4, 7, 13) and (2, 2, 1, 1, 1, 0, 1). Dot product = 24 = A000073(8).
		

Crossrefs

Formula

Triangle read by rows, = A000931(n-k+3) * (A000073 * 0^(n-k)).
Equals infinite lower triangular matrices P*M; where P = a matrix with the Padovan sequence in every column starting with offset 3: (1, 0, 1, 1, 1, 2, 2, 3, 4, 5, ...).
M = an infinite lower triangular matrix with the tribonacci sequence prefaced with a 1 as the main diagonal: (1, 1, 1, 2, 4, 7, 13, ...) and the rest zeros.
Previous Showing 31-40 of 401 results. Next