cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 693 results. Next

A291636 Matula-Goebel numbers of lone-child-avoiding rooted trees.

Original entry on oeis.org

1, 4, 8, 14, 16, 28, 32, 38, 49, 56, 64, 76, 86, 98, 106, 112, 128, 133, 152, 172, 196, 212, 214, 224, 256, 262, 266, 301, 304, 326, 343, 344, 361, 371, 392, 424, 428, 448, 454, 512, 524, 526, 532, 602, 608, 622, 652, 686, 688, 722, 742, 749, 766, 784, 817
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2017

Keywords

Comments

We say that a rooted tree is lone-child-avoiding if no vertex has exactly one child.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of its branches. This gives a bijective correspondence between positive integers and unlabeled rooted trees.
An alternative definition: n is in the sequence iff n is 1 or the product of two or more not necessarily distinct prime numbers whose prime indices already belong to the sequence. For example, 14 is in the sequence because 14 = prime(1) * prime(4) and 1 and 4 both already belong to the sequence.

Examples

			The sequence of all lone-child-avoiding rooted trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   14: (o(oo))
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   38: (o(ooo))
   49: ((oo)(oo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   86: (o(o(oo)))
   98: (o(oo)(oo))
  106: (o(oooo))
  112: (oooo(oo))
  128: (ooooooo)
  133: ((oo)(ooo))
  152: (ooo(ooo))
  172: (oo(o(oo)))
		

Crossrefs

These trees are counted by A001678.
The case with more than two branches is A331490.
Unlabeled rooted trees are counted by A000081.
Topologically series-reduced rooted trees are counted by A001679.
Labeled lone-child-avoiding rooted trees are counted by A060356.
Labeled lone-child-avoiding unrooted trees are counted by A108919.
MG numbers of singleton-reduced rooted trees are A330943.
MG numbers of topologically series-reduced rooted trees are A331489.

Programs

  • Mathematica
    nn=2000;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    srQ[n_]:=Or[n===1,With[{m=primeMS[n]},And[Length[m]>1,And@@srQ/@m]]];
    Select[Range[nn],srQ]

Extensions

Updated with corrected terminology by Gus Wiseman, Jan 20 2020

A298422 Number of rooted trees with n nodes in which all positive outdegrees are the same.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 2, 20, 2, 26, 12, 53, 2, 120, 2, 223, 43, 454, 2, 1100, 11, 2182, 215, 4902, 2, 11446, 2, 24744, 1242, 56014, 58, 131258, 2, 293550, 7643, 676928, 2, 1582686, 2, 3627780, 49155, 8436382, 2, 19809464, 50, 46027323, 321202
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Comments

Row sums of A298426.

Examples

			The a(9) = 6 trees: ((((((((o)))))))), (o(o(o(oo)))), (o((oo)(oo))), ((oo)(o(oo))), (ooo(oooo)), (oooooooo).
		

Crossrefs

Programs

  • Mathematica
    srut[n_]:=srut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[srut/@c]]]/@Select[IntegerPartitions[n-1],Function[ptn,And@@(Divisible[#-1,Length[ptn]]&/@ptn)]],SameQ@@Length/@Cases[#,{},{0,Infinity}]&]];
    Table[srut[n]//Length,{n,20}]

Formula

a(n) = 2 <=> n in {A008864}. - Alois P. Heinz, Jan 20 2018

Extensions

a(44)-a(52) from Alois P. Heinz, Jan 20 2018

A301700 Number of aperiodic rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 4, 10, 21, 52, 120, 290, 697, 1713, 4200, 10446, 26053, 65473, 165257, 419357, 1068239, 2732509, 7013242, 18059960, 46641983, 120790324, 313593621, 816046050, 2128101601, 5560829666, 14557746453, 38177226541, 100281484375, 263815322761, 695027102020
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2018

Keywords

Comments

An unlabeled rooted tree is aperiodic if the multiset of branches of the root is an aperiodic multiset, meaning it has relatively prime multiplicities, and each branch is also aperiodic.

Examples

			The a(6) = 10 aperiodic trees are (((((o))))), (((o(o)))), ((o((o)))), ((oo(o))), (o(((o)))), (o(o(o))), ((o)((o))), (oo((o))), (o(o)(o)), (ooo(o)).
		

Crossrefs

Programs

  • Mathematica
    arut[n_]:=arut[n]=If[n===1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[arut/@c]],GCD@@Length/@Split[#]===1&]]/@IntegerPartitions[n-1]];
    Table[Length[arut[n]],{n,20}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    MoebiusT(v)={vector(#v, n, sumdiv(n,d,moebius(n/d)*v[d]))}
    seq(n)={my(v=[1]); for(n=2, n, v=concat([1], MoebiusT(EulerT(v)))); v} \\ Andrew Howroyd, Sep 01 2018

Extensions

Terms a(21) and beyond from Andrew Howroyd, Sep 01 2018

A001429 Number of n-node connected unicyclic graphs.

Original entry on oeis.org

1, 2, 5, 13, 33, 89, 240, 657, 1806, 5026, 13999, 39260, 110381, 311465, 880840, 2497405, 7093751, 20187313, 57537552, 164235501, 469406091, 1343268050, 3848223585, 11035981711, 31679671920, 91021354454, 261741776369, 753265624291, 2169441973139, 6252511838796
Offset: 3

Views

Author

Keywords

Comments

Also unlabeled connected simple graphs with n vertices and n edges. The labeled version is A057500. - Gus Wiseman, Feb 12 2024

Examples

			From _Gus Wiseman_, Feb 12 2024: (Start)
Representatives of the a(3) = 1 through a(6) = 13 simple graphs:
  {12,13,23}  {12,13,14,23}  {12,13,14,15,23}  {12,13,14,15,16,23}
              {12,13,24,34}  {12,13,14,23,25}  {12,13,14,15,23,26}
                             {12,13,14,23,45}  {12,13,14,15,23,46}
                             {12,13,14,25,35}  {12,13,14,15,26,36}
                             {12,13,24,35,45}  {12,13,14,23,25,36}
                                               {12,13,14,23,25,46}
                                               {12,13,14,23,45,46}
                                               {12,13,14,23,45,56}
                                               {12,13,14,25,26,35}
                                               {12,13,14,25,35,46}
                                               {12,13,14,25,35,56}
                                               {12,13,14,25,36,56}
                                               {12,13,24,35,46,56}
(End)
		

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For at most one cycle we have A005703, labeled A129271, complement A140637.
Next-to-main diagonal of A054924. Cf. A000055.
The labeled version is A057500, connected case of A137916.
This is the connected case of A137917 and A236570.
Row k = 1 of A137918.
The version with loops is A368983.
A001349 counts unlabeled connected graphs.
A001434 and A006649 count unlabeled graphs with # vertices = # edges.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];Apply[Plus,Table[Take[CoefficientList[CycleIndex[DihedralGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]]x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,3,nn}]]  (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
    (* Second program: *)
    TreeGf[nn_] := Module[{A}, A = Table[1, {nn}]; For[n = 1, n <= nn 1, n++, A[[n + 1]] = 1/n * Sum[Sum[ d*A[[d]], {d, Divisors[k]}]*A[[n - k + 1]], {k, 1, n}]]; x A.x^Range[0, nn-1]];
    seq[n_] := Module[{t, g}, If[n < 3, {}, t = TreeGf[n - 2]; g[e_] := Normal[t + O[x]^(Quotient[n, e]+1)] /. x -> x^e  + O[x]^(n+1); Sum[Sum[ EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[k], g[1]* g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2], {k, 3, n}]]/2 // Drop[CoefficientList[#, x], 3]&];
    seq[32] (* Jean-François Alcover, Oct 05 2019, after Andrew Howroyd's PARI code *)
  • PARI
    \\ TreeGf gives gf of A000081
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={if(n<3, [], my(t=TreeGf(n-2)); my(g(e)=subst(t + O(x*x^(n\e)),x,x^e) + O(x*x^n)); Vec(sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2))} \\ Andrew Howroyd, May 05 2018

Formula

a(n) = A068051(n) - A027852(n) - A000081(n).

Extensions

More terms from Ronald C. Read
a(27) corrected, more terms, formula from Christian G. Bower, Feb 12 2002
Edited by Charles R Greathouse IV, Oct 05 2009
Terms a(30) and beyond from Andrew Howroyd, May 05 2018

A111299 Numbers whose Matula tree is a binary tree (i.e., root has degree 2 and all nodes except root and leaves have degree 3).

Original entry on oeis.org

4, 14, 49, 86, 301, 454, 886, 1589, 1849, 3101, 3986, 6418, 9761, 13766, 13951, 19049, 22463, 26798, 31754, 48181, 51529, 57026, 75266, 85699, 93793, 100561, 111139, 128074, 137987, 196249, 199591, 203878, 263431, 295969, 298154, 302426, 426058, 448259, 452411
Offset: 1

Views

Author

Keith Briggs, Nov 02 2005

Keywords

Comments

This sequence should probably start with 1. Then a number k is in the sequence iff k = 1 or k = prime(x) * prime(y) with x and y already in the sequence. - Gus Wiseman, May 04 2021

Examples

			From _Gus Wiseman_, May 04 2021: (Start)
The sequence of trees (starting with 1) begins:
     1: o
     4: (oo)
    14: (o(oo))
    49: ((oo)(oo))
    86: (o(o(oo)))
   301: ((oo)(o(oo)))
   454: (o((oo)(oo)))
   886: (o(o(o(oo))))
  1589: ((oo)((oo)(oo)))
  1849: ((o(oo))(o(oo)))
  3101: ((oo)(o(o(oo))))
  3986: (o((oo)(o(oo))))
  6418: (o(o((oo)(oo))))
  9761: ((o(oo))((oo)(oo)))
(End)
		

Crossrefs

Cf. A245824 (by number of leaves).
These trees are counted by 2*A001190 - 1.
The semi-binary version is A292050 (counted by A001190).
The semi-identity case is A339193 (counted by A063895).
A000081 counts unlabeled rooted trees with n nodes.
A007097 ranks rooted chains.
A276625 ranks identity trees, counted by A004111.
A306202 ranks semi-identity trees, counted by A306200.
A306203 ranks balanced semi-identity trees, counted by A306201.
A331965 ranks lone-child avoiding semi-identity trees, counted by A331966.

Programs

  • Mathematica
    nn=20000;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    binQ[n_]:=Or[n===1,With[{m=primeMS[n]},And[Length[m]===2,And@@binQ/@m]]];
    Select[Range[2,nn],binQ] (* Gus Wiseman, Aug 28 2017 *)
  • PARI
    i(n)=n==2 || is(primepi(n))
    is(n)=if(n<14,return(n==4)); my(f=factor(n),t=#f[,1]); if(t>1, t==2 && f[1,2]==1 && f[2,2]==1 && i(f[1,1]) && i(f[2,1]), f[1,2]==2 && i(f[1,1])) \\ Charles R Greathouse IV, Mar 29 2013
    
  • PARI
    list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, if(i(p)&&i(q), listput(v, t*q)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Mar 29 2013
    
  • PARI
    \\ Also see links.

Formula

The Matula tree of k is defined as follows:
matula(k):
create a node labeled k
for each prime factor m of k:
add the subtree matula(prime(m)), by an edge labeled m
return the node

Extensions

Definition corrected by Charles R Greathouse IV, Mar 29 2013
a(27)-a(39) from Charles R Greathouse IV, Mar 29 2013

A001372 Number of unlabeled mappings (or mapping patterns) from n points to themselves; number of unlabeled endofunctions.

Original entry on oeis.org

1, 1, 3, 7, 19, 47, 130, 343, 951, 2615, 7318, 20491, 57903, 163898, 466199, 1328993, 3799624, 10884049, 31241170, 89814958, 258604642, 745568756, 2152118306, 6218869389, 17988233052, 52078309200, 150899223268, 437571896993, 1269755237948, 3687025544605, 10712682919341, 31143566495273, 90587953109272, 263627037547365
Offset: 0

Views

Author

Keywords

Examples

			The a(3) = 7 mappings are:
1->1, 2->2, 3->3
1->1, 2->2, 3->1 (equiv. to 1->1, 2->2, 3->2, or 1->1, 2->1, 3->3, etc.)
1->1, 2->3, 3->2
1->1, 2->1, 3->2
1->1, 2->1, 3->1
1->2, 2->3, 3->1
1->2, 2->1, 3->1
		

References

  • F. Bergeron, G. Labelle, and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 41, 209.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.6.
  • R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.401.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 70, Table 3.4.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combstruct): M[ 2671 ] := [ F,{F=Set(K), K=Cycle(T), T=Prod(Z,Set(T))},unlabeled ]:
    a:=seq(count(M[2671],size=n),n=0..27); # added by W. Edwin Clark, Nov 23 2010
  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];CoefficientList[Series[Product[1/(1-x^i)^c[[i]],{i,1,nn-1}],{x,0,nn}],x]  (* after code given by Robert A. Russell in A000081 *) (* Geoffrey Critzer, Oct 12 2012 *)
    max = 40; A[n_] := A[n] = If[n <= 1, n, Sum[DivisorSum[j, #*A[#]&]*A[n-j], {j, 1, n-1}]/(n-1)]; H[t_] := Sum[A[n]*t^n, {n, 0, max}]; F = 1 / Product[1 - H[x^n], {n, 1, max}] + O[x]^max; CoefficientList[F, x] (* Jean-François Alcover, Dec 01 2015, after Joerg Arndt *)
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
    A000081=concat([0], A);
    H(t)=subst(Ser(A000081, 't), 't, t);
    x='x+O('x^N);
    F=1/prod(n=1,N, 1 - H(x^n));
    Vec(F)
    \\ Joerg Arndt, Jul 10 2014

Formula

Euler transform of A002861.
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.9557652856519949747148... (Otter's rooted tree constant), c = 0.442876769782206479836... (for a closed form see "Mathematical Constants", p.308). - Vaclav Kotesovec, Mar 17 2015

Extensions

More terms etc. from Paul Zimmermann, Mar 15 1996
Name edited by Keith J. Bauer, Jan 07 2024

A048816 Number of rooted trees with n nodes with every leaf at the same height.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 17, 28, 42, 68, 103, 168, 260, 420, 665, 1075, 1716, 2787, 4489, 7304, 11849, 19333, 31504, 51561, 84347, 138378, 227096, 373445, 614441, 1012583, 1669774, 2756951, 4555183, 7533988, 12469301, 20655523, 34238310, 56795325, 94270949
Offset: 1

Views

Author

Christian G. Bower, Apr 15 1999

Keywords

Comments

The trees are unordered (see A000081). For balanced ordered rooted trees see A079500. - Joerg Arndt, Jul 20 2014
The trees are unlabeled. For labeled version see A238372. - Alois P. Heinz, Dec 29 2014

Examples

			See Arndt link.
From _Gus Wiseman_, Oct 08 2018: (Start)
The a(1) = 1 through a(7) = 12 balanced rooted trees with n nodes:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)      (oooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))     ((ooooo))
                 (((o)))  (((oo)))   (((ooo)))    (((oooo)))
                          ((o)(o))   ((o)(oo))    ((o)(ooo))
                          ((((o))))  ((((oo))))   ((oo)(oo))
                                     (((o)(o)))   ((((ooo))))
                                     (((((o)))))  (((o)(oo)))
                                                  ((o)(o)(o))
                                                  (((((oo)))))
                                                  ((((o)(o))))
                                                  (((o))((o)))
                                                  ((((((o))))))
(End)
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[n==1, 1, If[k==0, 0, Sum[Sum[If[dJean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

A303431 Aperiodic tree numbers. Matula-Goebel numbers of aperiodic rooted trees.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 12, 13, 15, 18, 20, 22, 24, 26, 29, 30, 31, 33, 37, 39, 40, 41, 44, 45, 47, 48, 50, 52, 54, 55, 58, 60, 61, 62, 65, 66, 71, 72, 74, 75, 78, 79, 80, 82, 87, 88, 89, 90, 93, 94, 96, 99, 101, 104, 108, 109, 110, 111, 113, 116, 117, 120, 122
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2018

Keywords

Comments

A positive integer is an aperiodic tree number iff either it is equal to 1 or it belongs to A007916 (numbers that are not perfect powers, or numbers whose prime multiplicities are relatively prime) and all of its prime indices are also aperiodic tree numbers, where a prime index of n is a number m such that prime(m) divides n.

Examples

			Sequence of aperiodic rooted trees begins:
01 o
02 (o)
03 ((o))
05 (((o)))
06 (o(o))
10 (o((o)))
11 ((((o))))
12 (oo(o))
13 ((o(o)))
15 ((o)((o)))
18 (o(o)(o))
20 (oo((o)))
22 (o(((o))))
24 (ooo(o))
26 (o(o(o)))
29 ((o((o))))
30 (o(o)((o)))
31 (((((o)))))
33 ((o)(((o))))
		

Crossrefs

Programs

  • Mathematica
    zapQ[1]:=True;zapQ[n_]:=And[GCD@@FactorInteger[n][[All,2]]===1,And@@zapQ/@PrimePi/@FactorInteger[n][[All,1]]];
    Select[Range[100],zapQ]

A080936 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n and height k (1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 18, 7, 1, 1, 31, 57, 33, 9, 1, 1, 63, 169, 132, 52, 11, 1, 1, 127, 482, 484, 247, 75, 13, 1, 1, 255, 1341, 1684, 1053, 410, 102, 15, 1, 1, 511, 3669, 5661, 4199, 1975, 629, 133, 17, 1, 1, 1023, 9922, 18579, 16017, 8778, 3366, 912, 168, 19, 1
Offset: 1

Views

Author

Henry Bottomley, Feb 25 2003

Keywords

Comments

Sum of entries in row n is A000108(n) (the Catalan numbers).
From Gus Wiseman, Nov 16 2022: (Start)
Also the number of unlabeled ordered rooted trees with n nodes and height k. For example, row n = 5 counts the following trees:
(oooo) ((o)oo) (((o))o) ((((o))))
((oo)o) (((o)o))
((ooo)) (((oo)))
(o(o)o) ((o(o)))
(o(oo)) (o((o)))
(oo(o))
((o)(o))
(End)

Examples

			T(3,2)=3 because we have UUDDUD, UDUUDD, and UUDUDD, where U=(1,1) and D=(1,-1). The other two Dyck paths of semilength 3, UDUDUD and UUUDDD, have heights 1 and 3, respectively. - _Emeric Deutsch_, Jun 08 2011
Triangle starts:
  1;
  1,  1;
  1,  3,   1;
  1,  7,   5,   1;
  1, 15,  18,   7,  1;
  1, 31,  57,  33,  9,  1;
  1, 63, 169, 132, 52, 11, 1;
		

References

  • N. G. de Bruijn, D. E. Knuth, and S. O. Rice, The average height of planted plane trees, in: Graph Theory and Computing (ed. T. C. Read), Academic Press, New York, 1972, pp. 15-22.

Crossrefs

T(2n,n) gives A268316.
Counting by leaves instead of height gives A001263.
The unordered version is A034781.
The height statistic is ranked by A358379, unordered A109082.

Programs

  • Maple
    f := proc (k) options operator, arrow:
       sum(binomial(k-i, i)*(-z)^i, i = 0 .. floor((1/2)*k))
    end proc:
    h := proc (k) options operator, arrow:
       z^k/(f(k)*f(k+1))
    end proc:
    T := proc (n, k) options operator, arrow:
       coeff(series(h(k), z = 0, 25), z, n)
    end proc:
    for n to 11 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form Emeric Deutsch, Jun 08 2011
    # second Maple program:
    b:= proc(x, y, k) option remember; `if`(y>min(k, x) or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, k)+ b(x-1, y+1, k)))
        end:
    T:= (n, k)-> b(2*n, 0, k) -`if`(k=0, 0, b(2*n, 0, k-1)):
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Aug 06 2012
  • Mathematica
    b[x_, y_, k_] := b[x, y, k] = If[y > Min[k, x] || y<0, 0, If[x == 0, 1, b[x-1, y-1, k] + b[x-1, y+1, k]]]; T[n_, k_] := b[2*n, 0, k] - If[k == 0, 0, b[2*n, 0, k-1] ]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Depth[#]-2==k&]],{n,1,9},{k,1,n-1}] (* Gus Wiseman, Nov 16 2022 *)

Formula

T(n, k) = A080934(n, k) - A080934(n, k-1).
The g.f. for Dyck paths of height k is h(k) = z^k/(f(k)*f(k+1)), where f(k) are Fibonacci type polynomials defined by f(0)=f(1)=1, f(k)=f(k-1)-z*f(k-2) or by f(k) = Sum_{i=0..floor(k/2)} binomial(k-i,i)*(-z)^i. Incidentally, the g.f. for Dyck paths of height at most k is H(k) = f(k)/f(k+1). - Emeric Deutsch, Jun 08 2011
For all n >= 1 and floor((n+1)/2) <= k <= n we have: T(n,k) = 2*(2*k+3)*(2*k^2+6*k+1-3*n)*(2*n)!/((n-k)!*(n+k+3)!). - Gheorghe Coserea, Dec 06 2015
T(n, k) = Sum_{i=1..k-1} (-1)^(i+1) * (Sum_{j=1..n} (Sum_{x=0..n} (-1)^(j+x) * binomial(x+2n-2j+1,x))) * a(k-i); a(1)=1, a(0)=0. - Tim C. Flowers, May 14 2018

A300660 Number of unlabeled rooted phylogenetic trees with n (leaf-) nodes such that for each inner node all children are either leaves or roots of distinct subtrees.

Original entry on oeis.org

0, 1, 1, 2, 3, 6, 13, 30, 72, 182, 467, 1222, 3245, 8722, 23663, 64758, 178459, 494922, 1380105, 3867414, 10884821, 30756410, 87215419, 248117618, 707952902, 2025479210, 5809424605, 16700811214, 48113496645, 138884979562, 401645917999, 1163530868090
Offset: 0

Views

Author

Alois P. Heinz, Jun 18 2018

Keywords

Comments

From Gus Wiseman, Jul 31 2018 and Feb 06 2020: (Start)
a(n) is the number of lone-child-avoiding rooted identity trees whose leaves form an integer partition of n. For example, the following are the a(6) = 13 lone-child-avoiding rooted identity trees whose leaves form an integer partition of 6.
6,
(15),
(24),
(123), (1(23)), (2(13)), (3(12)),
(1(14)),
(1(1(13))),
(12(12)), (1(2(12))), (2(1(12))),
(1(1(1(12)))).
(End)

Examples

			:   a(3) = 2:        :   a(4) = 3:                      :
:      o       o     :        o         o        o      :
:     / \     /|\    :       / \       / \     /( )\    :
:    o   N   N N N   :      o   N     o   N   N N N N   :
:   ( )              :     / \       /|\                :
:   N N              :    o   N     N N N               :
:                    :   ( )                            :
:                    :   N N                            :
From _Gus Wiseman_, Feb 06 2020: (Start)
The a(2) = 1 through a(6) = 13 unlabeled rooted phylogenetic semi-identity trees:
  (oo) (ooo)     (oooo)         (ooooo)             (oooooo)
       ((o)(oo)) ((o)(ooo))     ((o)(oooo))         ((o)(ooooo))
                 ((o)((o)(oo))) ((oo)(ooo))         ((oo)(oooo))
                                ((o)((o)(ooo)))     ((o)(oo)(ooo))
                                ((oo)((o)(oo)))     (((o)(oo))(ooo))
                                ((o)((o)((o)(oo)))) ((o)((o)(oooo)))
                                                    ((o)((oo)(ooo)))
                                                    ((oo)((o)(ooo)))
                                                    ((o)(oo)((o)(oo)))
                                                    ((o)((o)((o)(ooo))))
                                                    ((o)((oo)((o)(oo))))
                                                    ((oo)((o)((o)(oo))))
                                                    ((o)((o)((o)((o)(oo)))))
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*binomial(a(i), j), j=0..n/i)))
        end:
    a:= n-> `if`(n=0, 0, 1+b(n, n-1)):
    seq(a(n), n=0..30);
  • Mathematica
    b[0, ] = 1; b[, _?NonPositive] = 0;
    b[n_, i_] := b[n, i] = Sum[b[n-i*j, i-1]*Binomial[a[i], j], {j, 0, n/i}];
    a[0] = 0; a[n_] := a[n] = 1 + b[n, n-1];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, May 03 2019, from Maple *)
    ursit[n_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]],UnsameQ@@#&],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}],n];
    Table[Length[ursit[n]],{n,10}] (* Gus Wiseman, Feb 06 2020 *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 3.045141208159736483720243229947630323380565686... and c = 0.2004129296838557718008171812000512670126... - Vaclav Kotesovec, Aug 27 2018
Previous Showing 61-70 of 693 results. Next