cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A074704 a(n) = floor(n^(3/2)) - n*floor(n^(1/2)).

Original entry on oeis.org

0, 0, 2, 0, 1, 2, 4, 6, 0, 1, 3, 5, 7, 10, 13, 0, 2, 4, 6, 9, 12, 15, 18, 21, 0, 2, 5, 8, 11, 14, 17, 21, 24, 28, 32, 0, 3, 6, 9, 12, 16, 20, 23, 27, 31, 35, 40, 44, 0, 3, 7, 10, 14, 18, 22, 27, 31, 35, 40, 44, 49, 54, 59, 0, 4, 8, 12, 16, 21, 25, 30, 34, 39, 44, 49, 54, 59, 64, 70
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 03 2002

Keywords

Comments

a(n) is the coefficient of 1/n in the base n representation of sqrt(n); namely, the digit after the 'decimal' point. - Jason Kimberley, Feb 2012

Crossrefs

Cf. A000196 [the digit before the 'decimal' point in the base n representation of sqrt(n)], A000093.

Formula

a(n) = A000093(n) - n * A000196(n).

A000263 Number of partitions into non-integral powers.

Original entry on oeis.org

3, 14, 39, 91, 173, 307, 502, 779, 1150, 1651, 2280, 3090, 4090, 5313, 6787, 8564, 10643, 13103, 15948, 19235, 23000, 27316, 32174, 37677, 43849, 50758, 58427, 66978, 76373, 86765, 98171, 110662, 124310, 139202, 155339, 172885
Offset: 3

Views

Author

Keywords

Comments

a(n) counts the solutions to the inequality x_1^(1/2)+x_2^(1/2)<=n for any two distinct integers 1<=x_1R. J. Mathar, Jul 03 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    A000263 := proc(n) local a,x1,x2 ; a := 0 ; for x1 from 1 to n^2 do x2 := (n-x1^(1/2))^2 ; if floor(x2) >= x1+1 then a := a+floor(x2-x1) ; fi; od: a ; end: seq(A000263(n),n=3..80) ; # R. J. Mathar, Sep 29 2009
  • Mathematica
    A000263[n_] := Module[{a, x1, x2 }, a = 0; For[x1 = 1, x1 <= n^2, x1++, x2 = (n-x1^(1/2))^2; If[Floor[x2] >= x1+1, a = a+Floor[x2-x1]]]; a]; Table[ A000263[n], {n, 3, 80}] (* Jean-François Alcover, Feb 06 2016, after R. J. Mathar *)

Extensions

More terms from R. J. Mathar, Sep 29 2009

A000339 Number of partitions into non-integral powers.

Original entry on oeis.org

1, 5, 18, 45, 100, 185, 323, 522, 804, 1180, 1687, 2322, 3139, 4146, 5377, 6859, 8645, 10733, 13203, 16058, 19356, 23132, 27460, 32330, 37846, 44031, 50954, 58637, 67203, 76613, 87021, 98443, 110951, 124616, 139526, 155681, 173246, 192243
Offset: 2

Views

Author

Keywords

Comments

a(n) counts the solutions to the inequality x_1^(1/2)+x_2^(1/2)<=n for any two integers 1<=x_1<=x_2. - R. J. Mathar, Jul 03 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    A000339 := proc(n) local a,x1,x2 ; a := 0 ; for x1 from 1 to n^2 do x2 := (n-x1^(1/2))^2 ; if floor(x2) >= x1 then a := a+floor(x2-x1+1) ; fi; od: a ; end: for n from 2 to 80 do printf("%d,\n",A000339(n)) ; od: # R. J. Mathar, Sep 29 2009
  • Mathematica
    A000339[n_] := Module[{a, x1, x2}, a = 0; For[x1 = 1 , x1 <= n^2 , x1++, x2 = (n-x1^(1/2))^2; If[Floor[x2] >= x1, a = a+Floor[x2-x1+1]]]; a]; Reap[ For[n = 2, n <= 80, n++, Print[an = A000339[n]]; Sow[an]]][[2, 1]] (* Jean-François Alcover, Feb 07 2016, after R. J. Mathar *)

Extensions

More terms from R. J. Mathar, Sep 29 2009

A000397 Number of partitions into non-integral powers.

Original entry on oeis.org

6, 32, 109, 288, 654, 1337, 2506, 4414, 7379, 11822, 18273, 27356, 39938, 56974, 79607, 109267, 147523, 196295, 257715, 334407, 429086, 545034, 685917, 855886, 1059360, 1301776, 1588321, 1925620, 2320544, 2780468, 3314007, 3930001, 4638319, 5449943, 6376505, 7430471, 8625369, 9976540, 11498855, 13210238, 15128487, 17272896, 19664754, 22326319, 25280987, 28554486, 32173404, 36166409, 40563607, 45397395, 50701682, 56512012, 62866699, 69805531, 77370606, 85607286, 94560129, 104280410, 114819255, 126229853, 138570284, 151899428, 166278945, 181775849, 198456941, 216394746, 235661505, 256338017, 278503009, 302242623, 327644632, 354799834, 383805368, 414759214, 447764499, 482931051
Offset: 5

Views

Author

Keywords

Comments

a(n) counts the solutions to the inequality x_1^(1/2)+x_2^(1/2)+x_3^(1/2)<=n for any three distinct integers 1<=x_1R. J. Mathar, Jul 03 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    A000397 := proc(n) local a,x1,x2,x3 ; a := 0 ; for x1 from 1 to n^2 do for x2 from x1+1 to floor( (n-x1^(1/2))^2 ) do x3 := (n-x1^(1/2)-x2^(1/2))^2 ; if floor(x3) >= x2+1 then a := a+floor(x3-x2) ; fi; od: od: a ; end: for n from 5 do printf("%d,\n",A000397(n)) ; od: # R. J. Mathar, Sep 29 2009
  • Mathematica
    A000397[n_] := Module[{a, x1, x2, x3}, a = 0; For[x1 = 1, x1 <= n^2, x1++, For[x2 = x1+1, x2 <= Floor[(n-x1^(1/2))^2], x2++, x3 = (n-x1^(1/2) - x2^(1/2))^2 ; If[Floor[x3] >= x2+1, a = a + Floor[x3-x2]]]]; a]; Reap[ For[n = 5, n <= 40, n++, Print[an = A000397[n]; Sow[an]]]][[2, 1]] (* Jean-François Alcover, Feb 08 2016, after R. J. Mathar *)

Extensions

More terms from R. J. Mathar, Sep 29 2009
More terms from Sean A. Irvine, Nov 14 2010

A238170 Integer part of square root of A001017: a(n) = floor(n^(9/2)).

Original entry on oeis.org

0, 1, 22, 140, 512, 1397, 3174, 6352, 11585, 19683, 31622, 48558, 71831, 102978, 143739, 196069, 262144, 344365, 445375, 568056, 715541, 891223, 1098758, 1342070, 1625363, 1953125, 2330129, 2761448, 3252453, 3808824, 4436552, 5141947, 5931641, 6812597, 7792110
Offset: 0

Views

Author

Philippe Deléham, Feb 21 2014

Keywords

Crossrefs

Integer part of square root of n^k: A000196 (k=1), A000093 (k=3), A155013 (k=5), A155014 (k=7), this sequence (k=9), A155015 (k=11), A155016 (k=13), A155018 (k=15), A155019 (k=17).

Programs

  • Magma
    [Floor(n^(9/2)): n in [0..40]]; // Vincenzo Librandi, Feb 23 2014
    
  • Mathematica
    Table[Floor[n^(9/2)], {n,0,30}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    a(n) = floor(n^(9/2)); \\ Joerg Arndt, Feb 23 2014
    
  • Python
    from math import isqrt
    def A238170(n): return isqrt(n**9) # Chai Wah Wu, Jan 27 2023

Formula

a(n) = floor(n^(9/2)).
a(n) = A000196(A001017(n)).
a(n) = floor(n^4*sqrt(n)).

A283295 Integers n such that floor(n^(3/2)) is squarefree.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 10, 12, 13, 15, 17, 19, 20, 22, 23, 32, 41, 43, 44, 45, 46, 47, 50, 52, 53, 55, 56, 57, 59, 69, 71, 72, 73, 75, 76, 80, 82, 84, 86, 87, 89, 90, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 122, 125
Offset: 1

Views

Author

Michel Marcus, Mar 04 2017

Keywords

Comments

Cao & Zhai prove that this sequence is infinite.
The asymptotic density of this sequence is 6/Pi^2 (A059956) (Cao and Zhai, 1998). - Amiram Eldar, Feb 17 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[200],SquareFreeQ[Floor[#^(3/2)]]&] (* Harvey P. Dale, Aug 25 2017 *)
  • PARI
    isok(n) = issquarefree(sqrtint(n^3));

A283296 Integers n such that floor(n^(3/2)) is cubefree.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 80, 82, 84, 86, 87, 88, 89, 90
Offset: 1

Views

Author

Michel Marcus, Mar 04 2017

Keywords

Comments

Zang & Li prove that this sequence is infinite.
The asymptotic density of this sequence is 1/zeta(3) (A088453) (Zang and Li, 2017). - Amiram Eldar, Feb 17 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[90], Max[FactorInteger[Floor[#^(3/2)]][[All, 2]]] < 3&] (* Jean-François Alcover, Feb 23 2019 *)
  • PARI
    isok(n) = if (n < 4, 1, vecmax(factor(sqrtint(n^3))[,2]) < 3);

A352718 a(n) = floor(n^(3/2)) - floor(n^(1/2))^3.

Original entry on oeis.org

0, 0, 1, 4, 0, 3, 6, 10, 14, 0, 4, 9, 14, 19, 25, 31, 0, 6, 12, 18, 25, 32, 39, 46, 53, 0, 7, 15, 23, 31, 39, 47, 56, 64, 73, 82, 0, 9, 18, 27, 36, 46, 56, 65, 75, 85, 95, 106, 116, 0, 10, 21, 31, 42, 53, 64, 76, 87, 98, 110, 121, 133, 145, 157, 0, 12, 24
Offset: 0

Views

Author

Clark Kimberling, Jun 21 2022

Keywords

Comments

a(n) = 0 if and only if n is a square.

Crossrefs

Programs

  • Mathematica
    Table[Floor[n^(3/2)] - Floor[n^(1/2)]^3, {n, 0, 120}]
  • PARI
    a(n) = sqrtint(n^3) - sqrtint(n)^3; \\ Michel Marcus, Jun 24 2022

A000135 Number of partitions into non-integral powers.

Original entry on oeis.org

1, 2, 6, 13, 24, 42, 73, 125, 204, 324, 511, 801, 1228, 1856, 2780, 4135, 6084, 8873, 12847, 18481, 26416, 37473, 52871, 74216, 103596, 143841, 198839, 273654, 374987, 511735, 695559, 941932, 1271139, 1709474, 2291195, 3061385, 4078152, 5416322
Offset: 1

Views

Author

Keywords

Comments

a(n) counts the solutions to the inequality sum_{i=1,2,..} x_i^(2/3)<=n for any number of distinct integers 1<=x_1R. J. Mathar, Jul 03 2009

Examples

			For n=3, the 6 solutions are (i) 1^(2/3)<=3. (ii) 1^(2/3)+2^(2/3)<=3. (iii) 2^(2/3)<=3. (iv) 3^(2/3)<=3. (v) 4^(2/3)<=3. (vi) 5^(2/3)<=3. - _R. J. Mathar_, Jul 03 2009
		

References

  • B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

8 more terms from R. J. Mathar, Jul 03 2009
20 more terms from Sean A. Irvine, Sep 28 2009

A000298 Number of partitions into non-integral powers.

Original entry on oeis.org

1, 4, 12, 30, 70, 159, 339, 706, 1436, 2853, 5551, 10622, 19975, 37043, 67811, 122561, 219090, 387578, 678977, 1178769, 2029115, 3465056, 5872648, 9882301, 16517284, 27430358, 45275673, 74297072, 121245153, 196810381, 317850809, 510830685, 817139589, 1301251186, 2063204707, 3257690903, 5123047561
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of solutions to the inequality sum_{i=1,2,..} x_i^(1/2)<=n for unknowns 1<=x_1R. J. Mathar, Jul 03 2009

Examples

			The 12 solutions for n=3 are 1^(1/2)<=3, 1^(1/2)+2^(1/2)<=3, 1^(1/2)+3^(1/2)<=3, 1^(1/2)+4^(1/2)<=3, 2^(1/2)<=3, 3^(1/2)<=3,...,8^(1/2)<=3 and 9^(1/2)<=3. - _R. J. Mathar_, Jul 03 2009
		

References

  • B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Extensions

3 more terms from R. J. Mathar, Jul 03 2009
More terms from Sean A. Irvine, Nov 11 2010
Previous Showing 21-30 of 43 results. Next