A007030
Non-Hamiltonian simplicial polyhedra with n nodes.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 30, 239, 2369, 22039, 205663, 1879665, 16999932, 152227187, 1353996482
Offset: 1
The unique non-Hamiltonian maximal planar graph of 11 vertices is the Goldner-Harary graph. A corresponding simplicial polyhedron can be obtained by attaching a tetrahedron to each of the six faces of a triangular bipyramid. - _William P. Orrick_, Feb 25 2021
- M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties. Tech. Rep. 92-91, Info. and Comp. Sci. Dept., Univ. Calif. Irvine, 1992.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties, Journal of Combinatorial Theory, Series B, Volume 66, Issue 1, January 1996, Pages 87-122.
- Eric Weisstein's World of Mathematics, Polyhedral Graph
- Wikimedia, Goldner-Harary graphs, additional images of the graph and related simplicial polyhedron created by David Eppstein and Richard J. Mathar. - _William P. Orrick_, Feb 25 2021
- Wikipedia, Goldner-Harary graph
A058378
Number of trivalent 2-connected planar graphs with 2n nodes.
Original entry on oeis.org
0, 1, 1, 3, 8, 29, 114, 583, 3310, 21168, 144622, 1039495, 7731540
Offset: 1
- A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 92.
- Computed by Brendan McKay and Gunnar Brinkmann using their program "plantri", Dec 19 2000.
A115340
Number of dual Hamiltonian cubic polyhedra or planar 3-connected Yutsis graphs on 2n nodes.
Original entry on oeis.org
1, 1, 2, 5, 14, 50, 233, 1248, 7593, 49536, 339483, 2404472, 17468202, 129459090, 975647292, 7458907217, 57744122366, 452028275567, 3573870490382
Offset: 2
Dries Van Dyck (VanDyck.Dries(AT)gmail.com), Mar 06 2006
- F. Jaeger, On vertex induced-forests in cubic graphs, Proceedings 5th Southeastern Conference, Congressus Numerantium (1974) 501-512.
-
A000109 = Cases[Import["https://oeis.org/A000109/b000109.txt", "Table"], {, }][[All, 2]];
A007030 = Cases[Import["https://oeis.org/A007030/b007030.txt", "Table"], {, }][[All, 2]];
a[n_] := A000109[[n]] - A007030[[n+2]];
Table[a[n], {n, 2, 19}] (* Jean-François Alcover, Jul 20 2022 *)
A253882
Number of 3-connected planar triangulations of the sphere with n vertices up to orientation preserving isomorphisms.
Original entry on oeis.org
1, 1, 2, 6, 17, 73, 389, 2274, 14502, 97033, 672781, 4792530, 34911786, 259106122, 1954315346, 14949368524, 115784496932, 906736988527, 7171613842488, 57231089062625, 460428456484557, 3731572377382341, 30447133566946517, 249968326771680542, 2063931874299323140
Offset: 4
- Andrew Howroyd, Table of n, a(n) for n = 4..500
- CombOS - Combinatorial Object Server, generate planar graphs
- Pascal Honvault, Equivalent classes of degree sequences for triangulated polyhedra and their convex realization, Contributions to Disc. Math. (2021) Vol. 16, No. 1, 128-137.
- Pascal Honvault, Local geometry of polyhedra, hal-03744217 [math], 2022.
- The House of Graphs, Planar graphs
-
a(n)={if(n<3, 0, (2*binomial(4*(n-3)+1, n-3)/((n-2)*(3*n-7))
+ 3*sumdiv(n-2, d, if(d>=2, my(s=(n-2)/d); eulerphi(d)*binomial(4*s,s))/4)
+ if(n%2==1, my(s=(n-3)/2); 3*binomial(4*s,s)*(2*s+1)/(3*s+1))
+ if(n%3==1, my(s=(n-4)/3); 8*binomial(4*s,s)*(4*s+1)/(3*s+1))
+ if(n%3==0, my(s=(n-3)/3); 2*binomial(4*s,s)) )/(6*(n-2)))} \\ Andrew Howroyd, Mar 02 2021
Name clarified and terms a(24) and beyond from
Andrew Howroyd, Mar 02 2021
A133236
Number of bipartite planar graphs with 2n nodes and at least one zero eigenvector.
Original entry on oeis.org
0, 1, 0, 1, 11, 8, 70, 613, 1225, 11330, 120628
Offset: 2
- Sciriha, I. and Fowler, P.W., Nonbonding Orbitals in Fullerenes: Nuts and Cores in Singular Polyhedral Graphs J. Chem. Inf. Model., 47, 5, 1763 - 1775, 2007.
A133237
Number of bipartite planar graphs with 2n nodes and exactly one zero eigenvector.
Original entry on oeis.org
0, 0, 0, 1, 2, 7, 67, 322, 1123, 10548, 81127
Offset: 2
- Sciriha, I. and Fowler, P.W., Nonbonding Orbitals in Fullerenes: Nuts and Cores in Singular Polyhedral Graphs J. Chem. Inf. Model., 47, 5, 1763 - 1775, 2007.
A222318
Number of 4-dimensional simplicial convex polytopes with n nodes.
Original entry on oeis.org
1, 2, 5, 37, 1142, 162004
Offset: 5
- Firsching, Moritz Realizability and inscribability for simplicial polytopes via nonlinear optimization. Math. Program. 166, No. 1-2 (A), 273-295 (2017). Table 1
- Moritz Firsching, The complete enumeration of 4-polytopes and 3-spheres with nine vertices, Israel Journal of Mathematics 240, 417-441 (2020); arXiv:1803.05205 [math.MG], 2018.
- Komei Fukuda, Hiroyuki Miyata and Sonoko Moriyama, Complete Enumeration of Small Realizable Oriented Matroids. Discrete Comput. Geom. 49 (2013), no. 2, 359--381. MR3017917. Also arXiv:1204.0645 [math.CO], 2012.
A342971
Non-1-tough simplicial polyhedra with n nodes.
Original entry on oeis.org
1, 2, 29, 233, 2297, 21192, 195862
Offset: 11
A007020
Maximal planar degree sequences with n nodes.
Original entry on oeis.org
1, 1, 1, 2, 5, 13, 33, 85, 199, 445, 947, 1909, 3713, 7006, 12765, 22764, 39540
Offset: 3
- M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties. Tech. Rep. 92-91, Info. and Comp. Sci. Dept., Univ. Calif. Irvine, 1992.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A058789
Number of polyhedra with n faces and n+1 vertices (or n vertices and n+1 faces).
Original entry on oeis.org
0, 1, 2, 11, 74, 633, 6134, 64439, 709302, 8085725, 94713809, 1134914458, 13865916560, 172301697581, 2173270387051
Offset: 4
a(5)=1 because the triangular prism is the only pentahedron with 6 vertices.
Comments