cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 199 results. Next

A272888 Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 with w*(x^2 + 8*y^2 - z^2) a square, where w,x,y are nonnegative integers and z is a positive integer.

Original entry on oeis.org

1, 2, 2, 1, 4, 5, 1, 2, 5, 5, 4, 4, 5, 8, 2, 2, 8, 6, 4, 6, 9, 5, 3, 4, 5, 12, 9, 1, 11, 8, 4, 2, 8, 9, 8, 7, 6, 12, 1, 5, 14, 10, 4, 8, 15, 9, 3, 4, 8, 14, 11, 5, 11, 16, 2, 6, 11, 6, 11, 4, 13, 13, 1, 1, 16, 17, 6, 9, 13, 9, 5, 7, 9, 19, 12, 6, 17, 8, 4, 6
Offset: 1

Views

Author

Zhi-Wei Sun, May 08 2016

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 7, 39, 63, 87, 5116, 2^(4k+2)*m (k = 0,1,2,... and m = 1, 7).
See arXiv:1604.06723 for more refinements of Lagrange's four-square theorem.

Examples

			a(1) = 1 since 1 = 0^2 + 0^2 + 0^2 + 1^2 with 1 > 0 and 0*(0^2 + 8*0^2 - 1^2) = 0^2.
a(4) = 1 since 4 = 0^2 + 0^2 + 0^2 + 2^2 with 2 > 0 and 0*(0^2 + 8*0^2 - 2^2) = 0^2.
a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 1 > 0 and 2*(1^2 + 8*1^2 - 1^2) = 4^2.
a(28) = 1 since 28 = 2^2 + 2^2 + 4^2 + 2^2 with 2 > 0 and 2*(2^2 + 8*4^2 - 2^2) = 16^2.
a(39) = 1 since 39 = 1^2 + 3^2 + 2^2 + 5^2 with 5 > 0 and 1*(3^2 + 8*2^2 - 5^2) = 4^2.
a(63) = 1 since 63 = 2^2 + 5^2 + 3^2 + 5^2 with 5 > 0 and 2*(5^2 + 8*3^2 - 5^2) = 12^2.
a(87) = 1 since 87 = 2^2 + 1^2 + 9^2 + 1^2 with 1 > 0 and 2*(1^2 + 8*9^2 - 1^2) = 36^2.
a(5116) = 1 since 5116 = 65^2 + 9^2 + 9^2 + 27^2 with 27 > 0 and 65*(9^2 + 8*9^2 - 27^2) = 0^2.
		

Crossrefs

Programs

  • Maple
    N:= 1000; # to get a(1)..a(N)
    A:= Vector(N):
    for z from 1 to floor(sqrt(N)) do
      for x from 0 to floor(sqrt(N-z^2)) do
        for y from 0 to floor(sqrt(N-z^2-x^2)) do
          q:= x^2 + 8*y^2 - z^2;
          if q < 0 then
            A[x^2+y^2+z^2]:= A[x^2+y^2+z^2]+1
          elif q = 0 then
            for w from 0 to floor(sqrt(N-z^2-x^2-y^2)) do
               m:= w^2 + x^2 + y^2 + z^2;
               A[m]:= A[m]+1;
            od
          else
            wm:= mul(`if`(t[2]::odd, t[1], 1), t=isqrfree(q)[2]);
            for j from 0 to floor((N-z^2-x^2-y^2)^(1/4)/sqrt(wm)) do
               m:= (wm*j^2)^2 + x^2 + y^2 + z^2;
               A[m]:= A[m]+1;
            od;
          fi
        od
      od
    od:
    convert(A,list); # Robert Israel, May 27 2016
  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[Sqrt[n-x^2-y^2-z^2](x^2+8y^2-z^2)],r=r+1],{x,0,Sqrt[n-1]},{y,0,Sqrt[n-1-x^2]},{z,1,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,1,80}]

Extensions

Rick L. Shepherd, May 27 2016: I checked all the statements in each example.

A319574 A(n, k) = [x^k] JacobiTheta3(x)^n, square array read by descending antidiagonals, A(n, k) for n >= 0 and k >= 0.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 0, 4, 1, 0, 0, 4, 6, 1, 0, 2, 0, 12, 8, 1, 0, 0, 4, 8, 24, 10, 1, 0, 0, 8, 6, 32, 40, 12, 1, 0, 0, 0, 24, 24, 80, 60, 14, 1, 0, 0, 0, 24, 48, 90, 160, 84, 16, 1, 0, 2, 4, 0, 96, 112, 252, 280, 112, 18, 1, 0, 0, 4, 12, 64, 240, 312, 574, 448, 144, 20, 1
Offset: 0

Views

Author

Peter Luschny, Oct 01 2018

Keywords

Comments

Number of ways of writing k as a sum of n squares.

Examples

			[ 0] 1,  0,    0,    0,     0,     0,     0      0,     0,     0, ... A000007
[ 1] 1,  2,    0,    0,     2,     0,     0,     0,     0,     2, ... A000122
[ 2] 1,  4,    4,    0,     4,     8,     0,     0,     4,     4, ... A004018
[ 3] 1,  6,   12,    8,     6,    24,    24,     0,    12,    30, ... A005875
[ 4] 1,  8,   24,   32,    24,    48,    96,    64,    24,   104, ... A000118
[ 5] 1, 10,   40,   80,    90,   112,   240,   320,   200,   250, ... A000132
[ 6] 1, 12,   60,  160,   252,   312,   544,   960,  1020,   876, ... A000141
[ 7] 1, 14,   84,  280,   574,   840,  1288,  2368,  3444,  3542, ... A008451
[ 8] 1, 16,  112,  448,  1136,  2016,  3136,  5504,  9328, 12112, ... A000143
[ 9] 1, 18,  144,  672,  2034,  4320,  7392, 12672, 22608, 34802, ... A008452
[10] 1, 20,  180,  960,  3380,  8424, 16320, 28800, 52020, 88660, ... A000144
   A005843,   v, A130809,  v,  A319576,  v ,   ...      diagonal: A066535
           A046092,    A319575,       A319577,     ...
		

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954.
  • J. Carlos Moreno and Samuel S. Wagstaff Jr., Sums Of Squares Of Integers, Chapman & Hall/CRC, (2006).

Crossrefs

Variant starting with row 1 is A122141, transpose of A286815.

Programs

  • Maple
    A319574row := proc(n, len) series(JacobiTheta3(0, x)^n, x, len+1);
    [seq(coeff(%, x, j), j=0..len-1)] end:
    seq(print([n], A319574row(n, 10)), n=0..10);
    # Alternative, uses function PMatrix from A357368.
    PMatrix(10, n -> A000122(n-1)); # Peter Luschny, Oct 19 2022
  • Mathematica
    A[n_, k_] := If[n == k == 0, 1, SquaresR[n, k]];
    Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
  • Sage
    for n in (0..10):
        Q = DiagonalQuadraticForm(ZZ, [1]*n)
        print(Q.theta_series(10).list())

A046895 Sizes of successive clusters in Z^4 lattice.

Original entry on oeis.org

1, 9, 33, 65, 89, 137, 233, 297, 321, 425, 569, 665, 761, 873, 1065, 1257, 1281, 1425, 1737, 1897, 2041, 2297, 2585, 2777, 2873, 3121, 3457, 3777, 3969, 4209, 4785, 5041, 5065, 5449, 5881, 6265, 6577, 6881, 7361, 7809, 7953, 8289, 9057
Offset: 0

Views

Author

Keywords

Comments

Number of lattice points inside or on the 4-sphere x^2 + y^2 + z^2 + u^2 = n. - T. D. Noe, Mar 14 2009

Crossrefs

Partial sums of A000118.

Programs

  • Mathematica
    Accumulate[ Table[ SquaresR[4, n], {n, 0, 42}]] (* Jean-François Alcover, May 11 2012 *)
    QP = QPochhammer; s = (QP[q^2]^5/(QP[q]^2*QP[q^4]^2))^4/(1-q) + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015, after Joerg Arndt *)
  • PARI
    q='q+O('q^66);
    Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^4/(1-q))
    /* Joerg Arndt, Apr 08 2013 */
    
  • Python
    from math import isqrt
    def A046895(n): return 1+((-(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))&-1)<<2)+(((t:=isqrt(m:=n>>2))**2*(t+1)-sum((q:=m//k)*((k<<1)+q+1) for k in range(1,t+1))&-1)<<4) # Chai Wah Wu, Jun 21 2024

Formula

a(n) = A122510(4,n). a(n^2) = A055410(n). - R. J. Mathar, Apr 21 2010
G.f.: T3(q)^4/(1-q) where T3(q) = 1 + 2*Sum_{k>=1} q^(k^2). - Joerg Arndt, Apr 08 2013
Pi^2/2 * (sqrt(n)-1)^4 < a(n) < Pi^2/2 * (sqrt(n)+1)^4 for n > 0. - Charles R Greathouse IV, Feb 17 2015
a(n) = Pi^2/2 * n^2 + O(n (log n)^(2/3)) using a result of Walfisz. - Charles R Greathouse IV, Feb 18 2015
a(n) = 1 + 8*A024916(n) - 32*A024916(floor(n/4)) by Jacobi's four-square theorem. - Peter J. Taylor, Jun 03 2020

A096727 Expansion of eta(q)^8 / eta(q^2)^4 in powers of q.

Original entry on oeis.org

1, -8, 24, -32, 24, -48, 96, -64, 24, -104, 144, -96, 96, -112, 192, -192, 24, -144, 312, -160, 144, -256, 288, -192, 96, -248, 336, -320, 192, -240, 576, -256, 24, -384, 432, -384, 312, -304, 480, -448, 144, -336, 768, -352, 288, -624, 576, -384, 96, -456, 744, -576, 336, -432, 960, -576, 192
Offset: 0

Views

Author

Michael Somos, Jul 06 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 8*q + 24*q^2 - 32*q^3 + 24*q^4 - 48*q^5 + 96*q^6 - 64*q^7 + 24*q^8 - ...
		

Crossrefs

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A096727List(len) = JacobiTheta4(len, 4)
    A096727List(57) |> println # Peter Luschny, Mar 12 2018
  • Magma
    A := Basis( ModularForms( Gamma0(4), 2), 57); A[1] - 8*A[2]; /* Michael Somos, Aug 21 2014 */
    
  • Mathematica
    CoefficientList[ Series[1 + Sum[k(-8x^k/(1 - x^k) + 48x^(2k)/(1 - x^(2k)) - 64x^(4k)/(1 - x^(4k))), {k, 1, 60}], {x, 0, 60}], x] (* Robert G. Wilson v, Jul 14 2004 *)
    a[ n_] := With[{m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ q Dt[ Log @ m, q], {q, 0, n}]]; (* Michael Somos, Sep 06 2012 *)
    a[ n_] := (-1)^n SquaresR[ 4, n]; (* Michael Somos, Jun 12 2014 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^4, {q, 0, n}]; (* Michael Somos, Jun 12 2014 *)
    QP = QPochhammer; s = QP[q]^8/QP[q^2]^4 + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 23 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 8 * (-1)^n * sumdiv( n, d, if( d%4, d)))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x *O (x^n); polcoeff( eta(x + A)^8 / eta(x^2 + A)^4, n))};
    
  • Sage
    A = ModularForms( Gamma0(4), 2, prec=57) . basis(); A[0] - 8*A[1]; # Michael Somos, Jun 12 2014
    

Formula

a(n) = -8*sigma(n) + 48*sigma(n/2) - 64*sigma(n/4) for n>0, where sigma(n) = A000203(n) if n is an integer, otherwise 0.
Euler transform of period 2 sequence [ -8, -4, ...].
G.f.: Prod_{k>0} (1 - x^k)^8 / (1 - x^(2k))^4 = 1 + Sum_{k>0} k * (-8 * x^k / (1 - x^k) + 48 * x^(2*k) /(1 - x^(2*k)) - 64 * x^(4*k)/(1 - x^(4*k))).
G.f. theta_4(q)^4 = (Sum_{k} (-q)^(k^2))^4.
Expansion of phi(-q)^4 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Nov 01 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^3), A(x^9)) where f(u, v, w) = v^4 - 30*u*v^2*w + 12*u*v*w * (u + 9*w) - u*w * (u^2 + 9*w*u + 81*w^2).
a(n) = (-1)^n * A000118(n). a(n) = 8 * A109506(n) unless n=0. a(2*n) = A004011(n). a(2*n + 1) = -A005879(n).
a(0) = 1, a(n) = -(8/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0. - Seiichi Manyama, May 02 2017

A272977 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with 3*x^2*y + z^2*w a square, where w is a nonzero integer and x,y,z are nonnegative integers with x >= z.

Original entry on oeis.org

2, 4, 1, 3, 8, 1, 1, 4, 3, 11, 3, 1, 9, 5, 3, 3, 10, 7, 6, 9, 3, 6, 1, 1, 11, 15, 4, 2, 13, 2, 2, 4, 4, 16, 5, 4, 13, 5, 2, 10, 12, 6, 5, 1, 12, 6, 1, 3, 7, 19, 2, 10, 10, 6, 3, 1, 2, 12, 7, 3, 15, 7, 4, 3, 16, 8, 6, 9, 5, 6, 1, 7, 12, 19, 3, 3, 7, 2, 4, 9
Offset: 1

Views

Author

Zhi-Wei Sun, May 11 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 3, 7, 23, 47, 71, 147, 199, 263, 439, 16^k*m (k = 0,1,2,... and m = 6, 12, 24, 44, 56, 140, 156, 174, 204, 284, 4652).
(ii) For each ordered pair (a,b) = (7,1), (8,1), (9,2), any positive integer can be written as x^2 + y^2 + z^2 + w^2 with a*x^2*y + b*z^2*w a square, where x,y,z are nonnegative integers and w is a nonzero integer.
Compare this conjecture with the one in A270073.
See arXiv:1604.06723 for more refinements of Lagrange's four-square theorem.

Examples

			a(1) = 2 since 1 = 1^2 + 0^2 + 0^2 + 1^2 with 1 > 0 and 3*1^2*0 + 0^2*1 = 0^2, and also 1 = 1^2 + 0^2 + 0^2 + (-1)^2 with 1 > 0 and 3*1^2*0 + 0^2*(-1) = 0^2.
a(3) = 1 since 3 = 1^2 + 0^2 + 1^2 + 1^2 with 1 = 1 and 3*1^2*0 + 1^2*1 = 1^2.
a(6) = 1 since 6 = 2^2 + 0^2 + 1^2 + 1^2 with 2 > 1 and 3*2^2*0 + 1^2*1 = 1^2.
a(7) = 1 since 7 = 1^2 + 1^2 + 1^2 + (-2)^2 with 1 = 1 and 3*1^2*1 + 1^2*(-2) = 1^2.
a(12) = 1 since 12 = 1^2 + 1^2 + 1^2 + (-3)^2 with 1 = 1 and 3*1^2*1 + 1*(-3) = 0^2.
a(23) = 1 since 23 = 3^2 + 1^2 + 3^2 + (-2)^2 with 3 = 3 and 3*3^2*1 + 3^2*(-2) = 3^2.
a(24) = 1 since 24 = 2^2 + 0^2 + 2^2 + 4^2 with 2 = 2 and 3*2^2*0 + 2^2*4 = 4^2.
a(44) = 1 since 44 = 3^2 + 5^2 + 3^2 + 1^2 with 3 = 3 and 3*3^2*5 + 3^2*1 = 12^2.
a(47) = 1 since 47 = 3^2 + 2^2 + 3^2 + (-5)^2 with 3 = 3 and 3*3^2*2 + 3^2*(-5) = 3^2.
a(56) = 1 since 56 = 6^2 + 0^2 + 2^2 + 4^2 with 6 > 2 and 3*6^2*0 + 2^2*4 = 4^2.
a(71) = 1 since 71 = 5^2 + 6^2 + 3^2 + (-1)^2 with 5 > 3 and 3*5^2*6 + 3^2*(-1) = 21^2.
a(140) = 1 since 140 = 5^2 + 3^2 + 5^2 + (-9)^2 with 5 = 5 and 3*5^2*3 + 5^2*(-9) = 0^2.
a(147) = 1 since 147 = 11^2 + 0^2 + 5^2 + 1^2 with 11 > 5 and 3*11^2*0 + 5^2*1 = 5^2.
a(156) = 1 since 156 = 7^2 + 3^2 + 7^2 + 7^2 with 7 = 7 and 3*7^2*3 + 7^2*7 = 28^2.
a(174) = 1 since 174 = 13^2 + 0^2 + 2^2 + 1^2 with 13 > 2 and 3*13^2*0 + 2^2*1 = 2^2.
a(199) = 1 since 199 = 9^2 + 1^2 + 9^2 + 6^2 with 9 = 9 and 3*9^2*1 + 9^2*6 = 27^2.
a(204) = 1 since 204 = 1^2 + 9^2 + 1^2 + (-11)^2 with 1 = 1 and 3*1^2*9 + 1^2*(-11) = 4^2.
a(263) = 1 since 263 = 3^2 + 14^2 + 3^2 + 7^2 with 3 = 3 and
3*3^2*14 + 3^2*7 = 21^2.
a(284) = 1 since 284 = 13^2 + 3^2 + 5^2 + (-9)^2 with 13 > 5 and 3*13^2*3 + 5^2*(-9) = 36^2.
a(439) = 1 since 439 = 13^2 + 5^2 + 7^2 + (-14)^2 with 13 > 7 and 3*13^2*5 + 7^2*(-14) = 43^2.
a(4652) = 1 since 4652 = 11^2 + 21^2 + 11^2 + (-63)^2 with 11 = 11 and 3*11^2*21 + 11^2*(-63) = 0^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&SQ[3x^2*y+z^2*(-1)^k*Sqrt[n-x^2-y^2-z^2]],r=r+1], {z,0,Sqrt[(n-1)/2]},{x,z,Sqrt[n-1-z^2]},{y,0,Sqrt[n-1-x^2-z^2]},{k,0,1}];Print[n, " ",r]; Continue, {n,1,80}]

A279612 Number of ways to write n = x^2 + y^2 + z^2 + w^2 with x + 2*y - 2*z a power of 4 (including 4^0 = 1), where x,y,z,w are nonnegative integers.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 1, 1, 3, 5, 2, 1, 3, 4, 1, 1, 3, 5, 5, 4, 3, 2, 3, 2, 4, 5, 1, 3, 4, 4, 1, 1, 5, 7, 7, 2, 3, 7, 3, 2, 4, 3, 4, 2, 8, 5, 1, 1, 6, 8, 3, 6, 7, 8, 2, 3, 3, 6, 8, 4, 6, 5, 2, 2, 9, 7, 7, 7, 7, 12, 3, 1, 9, 10, 7, 1, 10, 10, 2, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 15 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 16^k*q (k = 0,1,2,... and q = 1, 2, 3, 6, 7, 8, 12, 15, 27, 31, 47, 72, 76, 92, 111, 127).
(ii) Let a and b be positive integers with gcd(a,b) odd. Then any positive integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and a*x - b*y a power of two (including 2^0 = 1) if and only if (a,b) = (1,1), (2,1), (2,3).
(iii) Let a,b,c be positive integers with a <= b and gcd(a,b,c) odd. Then any positive integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and a*x + b*y - c*z a power of two if and only if (a,b,c) is among the triples (1,1,1), (1,1,2), (1,2,1), (1,2,2), (1,3,1), (1,3,2), (1,3,3), (1,3,4), (1,3,5), (1,4,1), (1,4,2), (1,4,3), (1,4,4), (1,5,1), (1,5,2), (1,5,4), (1,5,5,), (1,6,3), (1,7,4), (1,7,7), (1,8,1), (1,9,2), (2,3,1), (2,3,3), (2,3,4), (2,5,1), (2,5,3), (2,5,4), (2,5,5), (2,7,1), (2,7,3), (2,7,7), (2,9,3), (2,11,5), (3,4,3), (7,8,7).
(iv) Let a,b,c be positive integers with b <= c and gcd(a,b,c) odd. Then any positive integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and a*x - b*y - c*z a power of two if and only if (a,b,c) is among the triples (2,2,1), (4,2,1), (4,3,1), (4,4,3).
(v) Let a,b,c be positive integers with a <= b, c <= d, and gcd(a,b,c,d) odd. Then any positive integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and a*x + b*y - c*z -d*w a power of two if and only if (a,b,c,d) is among the quadruples (1,2,1,1), (1,2,1,2), (1,2,1,3), (1,3,1,2), (1,3,2,3), (1,3,2,4), (1,4,1,2), (1,7,2,6), (1,9,1,4), (2,2,2,3), (2,3,1,2), (2,3,1,3), (2,3,2,3), (2,3,6,1), (2,4,1,2), (2,5,1,2), (2,5,2,3), (2,5,3,4), (3,4,1,2), (3,4,1,3), (3,4,1,5), (3,4,2,5), (3,4,3,4), (3,8,1,10), (3,8,2,3), (4,5,1,5).
(vi) Let a,b,c be positive integers with a <= b <= c and gcd(a,b,c,d) odd. Then any positive integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and a*x + b*y + c*z -d*w a power of two if and only if (a,b,c,d) is among the quadruples (1,1,2,2), (1,1,2,3), (1,1,2,4), (1,2,2,3), (1,2,3,4), (1,2,4,3), (1,2,6,7), (1,3,4,4), (1,4,6,5), (2,3,5,4).
(vii) For any positive integers a,b,c,d, not all positive integers can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and a*x - b*y - c*z -d*w a power of two.
(viii) Let a and b be positive integers, and c and d be nonnegative integers. Then, not all positive integers can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and a*x + b*y + c*z + d*w a power of two.
We have verified a(n) > 0 for all n = 1..2*10^7. The conjecture that a(n) > 0 for all n > 0 appeared in arXiv:1701.05868.

Examples

			a(12) = 1 since 12 = 1^2 + 1^2 + 1^2 + 3^2 with 1 + 2*1 - 2*1 = 4^0.
a(15) = 1 since 15 = 3^2 + 1^2 + 2^2 + 1^2 with 3 + 2*1 - 2*2 = 4^0.
a(27) = 1 since 27 = 4^2 + 1^2 + 1^2 + 3^2 with 4 + 2*1 - 2*1 = 4.
a(31) = 1 since 31 = 3^2 + 2^2 + 3^2 + 3^2 with 3 + 2*2 - 2*3 = 4^0.
a(47) = 1 since 47 = 3^2 + 2^2 + 3^2 + 5^2 with 3 + 2*2 - 2*3 = 4^0.
a(72) = 1 since 72 = 8^2 + 0^2 + 2^2 + 2^2 with 8 + 2*0 - 2*2 = 4.
a(76) = 1 since 76 = 1^2 + 5^2 + 5^2 + 5^2 with 1 + 2*5 - 2*5 = 4^0.
a(92) = 1 since 92 = 4^2 + 6^2 + 6^2 + 2^2 with 4 + 2*6 - 2*6 = 4.
a(111) = 1 since 111 = 9^2 + 1^2 + 5^2 + 2^2 with 9 + 2*1 - 2*5 = 4^0.
a(127) = 1 since 127 = 7^2 + 2^2 + 5^2 + 7^2 with 7 + 2*2 - 2*5 = 4^0.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    FP[n_]:=FP[n]=n>0&&IntegerQ[Log[4,n]];
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&FP[x+2y-2z],r=r+1],{x,0,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,1,80}]

A300441 Number of the integers 4^k*(4*u(m)^2+1) (k,m = 0,1,2,...) such that n^2 - 4^k*(4*u(m)^2+1) can be written as the sum of two squares, where u(0) = 0, u(1) = 1, and u(j+1) = 4*u(j) - u(j-1) for j = 1,2,3,....

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 1, 4, 3, 3, 2, 3, 1, 3, 1, 3, 4, 4, 3, 5, 3, 3, 2, 4, 3, 3, 1, 5, 3, 3, 1, 6, 3, 4, 4, 5, 4, 4, 3, 6, 5, 4, 3, 5, 3, 4, 2, 5, 4, 5, 3, 4, 3, 5, 1, 5, 5, 3, 3, 3, 3, 5, 1, 5, 6, 3, 3, 6, 4, 4, 4, 6, 5, 5, 4, 6, 4, 5, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 05 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 2^k*m (k = 0,1,2,... and m = 1, 7).
This curious conjecture indicates that any positive square can be written as (2^k)^2 + (2^(k+1)*u(m))^2 + x^2 + y^2 with k,m,x,y nonnegative integers. In the 2017 JNT paper, the author proved that each n = 1,2,3,... can be written as 4^k*(1+4*x^2+y^2)+z^2 with k,x,y,z nonnegative integers.
We have verified that a(n) > 0 for all n = 1..10^7.

Examples

			a(1) = 1 since 1^2 - 4^0*(4*u(0)^2+1) = 1 is 1^2 + 0^2.
a(5) = 3 since 5^2 - 4^0*(4*u(1)^2+1) = 20 = 4^2 + 2^2, 5^2 - 4^1*(4*u(1)^2+1) = 5 = 2^2 + 1^2, and 5^2 - 4^2*(4*u(0)^2+1) = 9 = 3^2 + 0^2.
a(7) = 1 since 7^2 - 4^1*(4*u(0)^2+1) = 45 = 6^2 + 3^2.
		

Crossrefs

Programs

  • Mathematica
    u[0]=0;
    u[1]=1;
    u[n_]:=u[n]=4u[n-1]-u[n-2];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[If[Mod[Part[Part[f[n],i],1]-3,4]==0&&Mod[Part[Part[f[n],i],2],2]==1,1,0],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=n==0||(n>0&&g[n]);
    tab={};Do[r=0;Do[m=0;Label[cc];If[4u[m]^2+1>n^2/4^k,Goto[bb]];If[QQ[n^2-4^k*(4u[m]^2+1)],r=r+1,m=m+1;Goto[cc]];
    Label[bb],{k,0,Log[2,n]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A236924 Number of integer solutions to a^2 + 2*b^2 + 2*c^2 + 4*d^2 = n.

Original entry on oeis.org

1, 2, 4, 8, 8, 12, 16, 16, 24, 26, 24, 24, 32, 28, 32, 48, 24, 36, 52, 40, 48, 64, 48, 48, 96, 62, 56, 80, 64, 60, 96, 64, 24, 96, 72, 96, 104, 76, 80, 112, 144, 84, 128, 88, 96, 156, 96, 96, 96, 114, 124, 144, 112, 108, 160, 144, 192, 160, 120, 120, 192, 124, 128, 208, 24, 168, 192, 136, 144, 192, 192
Offset: 0

Views

Author

N. J. A. Sloane, Feb 14 2014

Keywords

Crossrefs

Programs

  • Maple
    with(LinearAlgebra);
    L:=proc(a,b,c,d,M) local n,hit,ul,vl,wl,xl,u,v,w,x,su,sv,sw,sx;
    hit:=Array(0..M); ul:=floor(sqrt(M/a)); vl:=floor(sqrt(M/b));
    wl:=floor(sqrt(M/c)); xl:=floor(sqrt(M/d));
    for u from -ul to ul do
    su:=a*u^2;
    for v from -vl to vl do
    sv:=su+b*v^2;
    for w from -wl to wl do
    sw:=sv+c*w^2;
    for x from -xl to xl do
    sx:=sw+d*x^2;
    if sx <= M then hit[sx]:=hit[sx]+1; fi;
    od; od; od; od;
    [seq(hit[n],n=0..M)];
    end;
    L(1,2,2,4,60);
  • Mathematica
    CoefficientList[EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^2]^2*EllipticTheta[3, 0, q^4] + O[q]^100, q] (* Jean-François Alcover, Feb 15 2023, after Ilya Gutkovskiy *)

Formula

Yao and Xia give an explicit formula for a(n) due to Liouville.
G.f.: theta_3(q)*theta_3(q^2)^2*theta_3(q^4), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 03 2018

A273021 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with 2*x*y + y*z - z*w - w*x a square, where w is a positive integer and x,y,z are nonnegative integers with x <= y.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 2, 1, 2, 2, 1, 3, 3, 4, 2, 2, 3, 5, 2, 2, 4, 1, 1, 3, 3, 4, 7, 4, 4, 1, 1, 1, 4, 4, 2, 4, 4, 6, 5, 2, 5, 7, 3, 3, 3, 4, 1, 3, 5, 4, 5, 6, 2, 8, 1, 4, 4, 4, 3, 2, 5, 5, 4, 2, 5, 7, 2, 3, 4, 5, 1, 5, 4, 5, 6, 5, 3, 4, 3, 2
Offset: 1

Views

Author

Zhi-Wei Sun, May 13 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 11, 31, 47, 55, 71, 105, 115, 119, 253, 383, 385, 4^k*m (k = 0,1,2,... and m = 2, 22, 23, 30, 330).
(ii) Each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with (x+y)*(z+w) a square, where w is an integer and x,y,z are nonnegative integers with x <= y >= z >= |w|.
See arXiv:1604.06723 for more conjectural refinements of Lagrange's four-square theorem.

Examples

			a(1) = 1 since 1 = 0^2 + 0^2 + 0^2 + 1^2 with 0 = 0 and 2*0*0 + 0*0 - 0*1 - 1*0 = 0^2.
a(2) = 1 since 2 = 0^2 + 1^2 + 0^2 + 1^2 with 0 < 1 and 2*0*1 + 1*0 - 0*1 - 1*0 = 0^2.
a(11) = 1 since 11 = 0^2 + 1^2 + 3^2 + 1^2 with 0 < 1 and 2*0*1 + 1*3 - 3*1 - 1*0 = 0^2.
a(22) = 1 since 22 = 0^2 + 3^2 + 2^2 + 3^2 with 0 < 3 and 2*0*3 + 3*2 - 2*3 - 3*0 = 0^2.
a(23) = 1 since 23 = 2^2 + 3^2 + 3^2 + 1^2 with 2 < 3 and 2*2*3 + 3*3 - 3*1 - 1*2 = 4^2.
a(30) = 1 since 30 = 1^2 + 3^2 + 2^2 + 4^2 with 1 < 3 and 2*1*3 + 3*2 - 2*4 - 4*1 = 0^2.
a(31) = 1 since 31 = 3^2 + 3^2 + 2^2 + 3^2 with 3 = 3 and
2*3*3 + 3*2 - 2*3 -3*3 = 3^2.
a(47) = 1 since 47 = 3^2 + 5^2 + 2^2 + 3^2 with 3 < 5 and 2*3*5 + 5*2 - 2*3 - 3*3 = 5^2.
a(55) = 1 since 55 = 1^2 + 7^2 + 2^2 + 1^2 with 1 < 7 and 2*1*7 + 7*2 - 2*1 - 1*1 = 5^2.
a(71) = 1 since 71 = 1^2 + 5^2 + 3^2 + 6^2 with 1 < 5 and 2*1*5 + 5*3 - 3*6 - 6*1 = 1^2.
a(105) = 1 since 105 = 1^2 + 6^2 + 2^2 + 8^2 with 1 < 6 and 2*1*6 + 6*2 - 2*8 - 8*1 = 0^2.
a(115) = 1 since 115 = 1^2 + 8^2 + 7^2 + 1^2 with 1 < 8 and 2*1*8 + 8*7 - 7*1 - 1*1 = 8^2.
a(119) = 1 since 119 = 1^2 + 6^2 + 1^2 + 9^2 with 1 < 6 and 2*1*6 + 6*1 - 1*9 - 9*1 = 0^2.
a(253) = 1 since 253 = 2^2 + 8^2 + 11^2 + 8^2 with 2 < 8 and 2*2*8 + 8*11 - 11*8 - 8*2 = 4^2.
a(330) = 1 since 330 = 4^2 + 13^2 + 8^2 + 9^2 with 4 < 13 and 2*4*13 + 13*8 - 8*9 - 9*4 = 10^2.
a(383) = 1 since 383 = 9^2 + 14^2 + 5^2 + 9^2 with 9 < 14 and 2*9*14 + 14*5 - 5*9 - 9*9 = 14^2.
a(385) = 1 since 385 = 4^2 + 12^2 + 0^2 + 15^2 with 4 < 12 and 2*4*12 + 12*0 - 0*15 - 15*4 = 6^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[y*(2x+z)-Sqrt[n-x^2-y^2-z^2]*(x+z)],r=r+1],{x,0,Sqrt[(n-1)/2]},{y,x,Sqrt[n-1-x^2]},{z,0,Sqrt[n-1-x^2-y^2]}];Print[n," ",r];Continue,{n,1,80}]

A273108 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with (x + y)^2 + (4z)^2 a square, where x,y,z,w are nonnegative integers with x <= y > z.

Original entry on oeis.org

1, 2, 1, 1, 3, 3, 1, 2, 3, 5, 3, 1, 3, 4, 1, 1, 5, 4, 3, 3, 3, 4, 1, 3, 5, 9, 4, 1, 6, 5, 3, 2, 5, 7, 6, 3, 3, 7, 1, 5, 9, 5, 3, 3, 6, 5, 1, 1, 6, 10, 6, 3, 6, 9, 3, 4, 4, 5, 8, 1, 6, 8, 2, 1, 10, 10, 2, 5, 6, 6, 2, 4, 6, 11, 7, 3, 6, 5, 2, 3
Offset: 1

Views

Author

Zhi-Wei Sun, May 15 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 39, 47, 95, 543, 4^k*m (k = 0,1,2,... and m = 1, 3, 7, 15, 23, 135, 183).
(ii) Any natural number can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that (a*x+b*y)^2 + (c*z)^2 is a square, whenever (a,b,c) is among the triples (1,2,4), (1,2,12), (1,4,8), (1,4,12), (1,10,20), (1,15,12), (2,7,20), (2,7,60), (2,21,60), (3,3,4), (3,3,40), (3,4,12), (3,5,60), (3,6,20), (3,9,20), (3,11,24), (3,12,8), (3,27,20), (3,27,56), (3,29,60), (3,30,28), (3,45,20), (4,4,3), (4,4,5), (4,4,9), (4,4,15), (4,8,5), (4,12,15), (4,12,21), (4,12,45), (4,16,45), (4,19,40), (4,20,21), (4,36,21), (4,36,33), (4,52,63), (5,5,8), (5,5,12), (5,5,24), (5,6,12), (5,8,24), (5,10,4), (5,15,24), (5,25,16), (5,30,12), (5,35,48), (5,40,24), (6,10,15), (6,15,28), (6,45,28), (7,7,20), (7,7,24), (7,21,12), (7,63,36), (8,8,15), (8,12,45), (8,16,35), (8,16,45), (8,32,15), (8,32,21), (8,48,45), (9,9,40), (9,18,28), (9,27,16), (9,45,20), (10,15,12), (10,25,28), (11,11,60), (12,12,5), (12,12,35), (12,20,63), (12,60,55).
See also A271714, A273107, A273110 and A273134 for similar conjectures related to Pythagorean triples. For more conjectural refinements of Lagrange's four-square theorem, one may consult arXiv:1604.06723.

Examples

			a(1) = 1 since 1 = 0^2 + 1^2 + 0^2 + 0^2 with 0 < 1 > 0 and (0+1)^2 + (4*0)^2 = 1^2.
a(3) = 1 since 3 = 1^2 + 1^2 + 0^2 + 1^2 with 1 = 1 > 0 and (1+1)^2 + (4*0)^2 = 2^2.
a(7) = 1 since 7 = 1^2 + 2^2 + 1^2 + 1^2 with 1 < 2 > 1 and (1+2)^2 + (4*1)^2 = 5^2.
a(15) = 1 since 15 = 1^2 + 2^2 + 1^2 + 3^2 with 1 < 2 > 1 and (1+2)^2 + (4*1)^2 = 5^2.
a(23) = 1 since 23 = 3^2 + 3^2 + 2^2 + 1^2 with 3 = 3 > 2 and (3+3)^2 + (4*2)^2 = 10^2.
a(39) = 1 since 39 = 1^2 + 5^2 + 2^2 + 3^2 with 1 < 5 > 2 and (1+5)^2 + (4*2)^2 = 10^2.
a(47) = 1 since 47 = 3^2 + 3^2 + 2^2 + 5^2 with 3 = 3 > 2 and (3+3)^2 + (4*2)^2 = 10^2.
a(95) = 1 since 95 = 3^2 + 7^2 + 6^2 + 1^2 with 3 < 7 > 6 and (3+7)^2 + (4*6)^2 = 26^2.
a(135) = 1 since 135 = 3^2 + 6^2 + 3^2 + 9^2 with 3 < 6 > 3 and (3+6)^2 + (4*3)^2 = 15^2.
a(183) = 1 since 183 = 2^2 + 7^2 + 3^2 + 11^2 with 2 < 7 > 3 and (2+7)^2 + (4*3)^2 = 15^2.
a(543) = 1 since 543 = 2^2 + 13^2 + 9^2 + 17^2 with 2 < 13 > 9 and (2+13)^2 + (4*9)^2 = 39^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[(x+y)^2+16*z^2],r=r+1],{x,0,Sqrt[n/2]},{y,x,Sqrt[n-x^2]},{z,0,Min[y-1,Sqrt[n-x^2-y^2]]}];Print[n," ",r];Continue,{n,1,80}]

Extensions

All statements in examples checked by Rick L. Shepherd, May 29 2016
Previous Showing 51-60 of 199 results. Next