A319934 Coefficients of the columns generating polynomials of the JacobiTheta3 array A319574 multiplied by n!, triangle read by rows, T(n,k) for 0 <= k <= n.
1, 0, 2, 0, -4, 4, 0, 16, -24, 8, 0, -48, 176, -96, 16, 0, 288, -1120, 1120, -320, 32, 0, -1920, 8896, -11520, 5440, -960, 64, 0, 11520, -77952, 127232, -80640, 22400, -2688, 128, 0, -80640, 738048, -1480192, 1195264, -448000, 82432, -7168, 256
Offset: 0
Examples
Triangle starts: [0] 1 [1] 0, 2 [2] 0, -4, 4 [3] 0, 16, -24, 8 [4] 0, -48, 176, -96, 16 [5] 0, 288, -1120, 1120, -320, 32 [6] 0, -1920, 8896, -11520, 5440, -960, 64 [7] 0, 11520, -77952, 127232, -80640, 22400, -2688, 128 [8] 0, -80640, 738048, -1480192, 1195264, -448000, 82432, -7168, 256
Crossrefs
Cf. A319574.
Programs
-
Maple
A319934poly := proc(N, opt) local a, n; if N = 0 then a := n -> 0!*1 elif N = 1 then a := n -> 1!*2*n elif N = 2 then a := n -> 2!*2*n*(n-1) elif N = 3 then a := n -> 3!*(4/3)*n*(n-1)*(n-2) elif N = 4 then a := n -> 4!*(2/3)*n*(n^3-6*n^2+11*n-3) elif N = 5 then a := n -> 5!*(4/15)*n*(n-1)*(n^3-9*n^2+26*n-9) elif N = 6 then a := n -> 6!*(4/45)*n*(n-2)*(n-1)*(n^3-12*n^2+47*n-15) elif N = 7 then a := n -> 7!*(8/315)*n*(n-1)*(n-2)*(n-3)*(n^3-15*n^2+74*n-15) fi; if opt = 'val' then print(seq(a(n), n=0..19)) elif opt = 'coe' then print(seq(coeff(a(n), n, i), i=0..N)); elif opt = 'pol' then sort(expand(a(n)), n, ascending) fi end: for N from 0 to 7 do A319934poly(N, 'coe') od;
Comments