A339277
Number of partitions of 2*n into powers of 2 where every part appears at least 2 times.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 9, 11, 16, 19, 25, 30, 39, 45, 56, 65, 81, 92, 111, 127, 152, 171, 201, 226, 265, 295, 340, 379, 435, 480, 545, 601, 682, 747, 839, 920, 1031, 1123, 1250, 1361, 1513, 1640, 1811, 1963, 2164, 2335, 2561, 2762, 3027, 3253, 3548, 3813, 4153, 4448, 4827, 5167
Offset: 0
a(4) = 5 because we have [4, 4], [2, 2, 2, 2], [2, 2, 2, 1, 1], [2, 2, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
-
nmax = 55; CoefficientList[Series[(1/(1 - x^3)) Product[1/(1 - x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
A000123[0] = 1; A000123[n_] := A000123[n] = A000123[Floor[n/2]] + A000123[n - 1]; a[n_] := Sum[ChebyshevU[k, -1/2] A000123[n - k], {k, 0, n}]; Table[a[n], {n, 0, 55}]
A346912
a(0) = 1; a(n) = a(n-1) + a(floor(n/2)) + 1.
Original entry on oeis.org
1, 3, 7, 11, 19, 27, 39, 51, 71, 91, 119, 147, 187, 227, 279, 331, 403, 475, 567, 659, 779, 899, 1047, 1195, 1383, 1571, 1799, 2027, 2307, 2587, 2919, 3251, 3655, 4059, 4535, 5011, 5579, 6147, 6807, 7467, 8247, 9027, 9927, 10827, 11875, 12923, 14119, 15315
Offset: 0
-
f:= proc(n) option remember; procname(n-1) + procname(floor(n/2)) + 1 end proc;
f(0):= 1:
map(f, [$1..50]); # Robert Israel, May 04 2025
-
a[0] = 1; a[n_] := a[n] = a[n - 1] + a[Floor[n/2]] + 1; Table[a[n], {n, 0, 47}]
nmax = 47; CoefficientList[Series[(1/(1 - x)) (-1 + 2 Product[1/(1 - x^(2^k)), {k, 0, Floor[Log[2, nmax]]}]), {x, 0, nmax}], x]
-
from itertools import islice
from collections import deque
def A346912_gen(): # generator of terms
aqueue, f, b, a = deque([2]), True, 1, 2
yield from (1, 3, 7)
while True:
a += b
yield 4*a - 1
aqueue.append(a)
if f: b = aqueue.popleft()
f = not f
A346912_list = list(islice(A346912_gen(),40)) # Chai Wah Wu, Jun 08 2022
A377556
E.g.f.: exp(Sum_{n>=1} A006519(n) * x^n).
Original entry on oeis.org
1, 1, 5, 19, 193, 1181, 13021, 117895, 1868609, 20980153, 348219541, 4940639771, 98898110785, 1632238421269, 34910480911853, 672959412044431, 16733065940227201, 359936040496423025, 9469928134781142949, 229631546862609396643, 6716832478519734558401, 178344294076141938008461
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[Sum[2^IntegerExponent[k, 2]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0,nmax]!
A381810
Array read by downward antidiagonals: A(n,k) is a generalization of odd columns of A125790 defined in Comments for n > 0, k >= 0.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 8, 36, 20, 10, 10, 64, 42, 84, 14, 12, 100, 72, 286, 100, 20, 14, 144, 110, 680, 322, 120, 26, 16, 196, 156, 1330, 744, 364, 140, 36, 18, 256, 210, 2300, 1430, 816, 406, 656, 46, 20, 324, 272, 3654, 2444, 1540, 888, 3396, 740, 60, 22, 400, 342, 5456, 3850, 2600, 1650, 10816, 3682, 840, 74
Offset: 1
Array begins:
===========================================================
n\k| 0 1 2 3 4 5 6 7 ...
---+-------------------------------------------------------
1 | 2, 4, 6, 8, 10, 12, 14, 16 ...
2 | 4, 16, 36, 64, 100, 144, 196, 256 ...
3 | 6, 20, 42, 72, 110, 156, 210, 272 ...
4 | 10, 84, 286, 680, 1330, 2300, 3654, 5456 ...
5 | 14, 100, 322, 744, 1430, 2444, 3850, 5712 ...
6 | 20, 120, 364, 816, 1540, 2600, 4060, 5984 ...
7 | 26, 140, 406, 888, 1650, 2756, 4270, 6256 ...
8 | 36, 656, 3396, 10816, 26500, 55056, 102116, 174336 ...
...
Cf.
A000123,
A001511,
A007814,
A053645,
A062383,
A070939,
A078121,
A106400,
A119387,
A125790,
A236206.
-
upto1(n) = my(v1); v1 = vector(n+1, i, vector(i, j, j==1 || j==i)); for(i=2, n, for(j=1, i-1, v1[i+1][j+1] = sum(k=j-1, i-1, v1[i][k+1]*v1[k+1][j]))); v1
A(n,m) = my(L = logint(n,2), A = valuation(n,2), B = logint(n>>A,2), v1, v2, v3); v1 = upto1(L+2); v2 = vector(L+2, i, vecsum(v1[i])); for(i=1, 2*m, v2 = vector(L+2, i, sum(j=1, i, v1[i][j]*v2[j]))); for(i=1, B, v3 = v2; for(j=1, L-i+1, v2[j+1] = sum(k=1, j+1, v1[j+1][k]*v3[k+1]*if(!bittest(n,L-i+1), (-1)^(j+k+1), 1)))); v2[A+2]
-
upto1(n) = my(v1); v1 = vector(n+1, i, vector(i, j, j==1 || j==i)); for(i=2, n, for(j=1, i-1, v1[i+1][j+1] = sum(k=j-1, i-1, v1[i][k+1]*v1[k+1][j]))); v1
upto2(n,m) = my(L = logint(n,2), A = valuation(n,2), B = logint(n>>A,2), v1, v2, v3, v4, v5); v1 = upto1(L+2); v2 = vector(L+2, i, 1); v3 = vector(m+1, i, 0); for(s=0, m, for(i=1, min(s+1,2), v2 = vector(L+2, i, sum(j=1, i, v1[i][j]*v2[j]))); v4 = v2; for(i=1, B, v5 = v4; for(j=1, L-i+1, v4[j+1] = sum(k=1, j+1, v1[j+1][k]*v5[k+1]*if(!bittest(n,L-i+1), (-1)^(j+k+1), 1)))); v3[s+1] = v4[A+2]); v3 \\ slightly modified version of the first program, some kind of memoization; generates A(n,k) for k=0..m
A099729
a(n) = a(n-1)^2 + a(floor(n/2))^2; a(0) = 1.
Original entry on oeis.org
1, 2, 8, 68, 4688, 21977408, 483006462403088, 233295242723145661671791940368, 54426670277251448804881298598338033107084297639402489952768
Offset: 0
-
a = ConstantArray[0, 10]; a[[1]]=2; Do[a[[n]] = a[[n-1]]^2 + a[[Floor[n/2]]]^2,{n,2,10}]; Flatten[{1,a}] (* Vaclav Kotesovec, Dec 18 2014 *)
Original entry on oeis.org
1, 1, 3, 7, 37, 225, 2707, 47991, 1566965, 85002865, 8346008131, 1441358958439, 452666387604933, 257384373709193473, 268828878795481175283, 516988085848458847554135, 1844678455777198460320221077
Offset: 0
-
{a(n)=local(N=(2^(n+1)+3+(-1)^n)/6,X=x+O(x^N));polcoeff(1/((1-X)^2*prod(m=0,n-1,1-X^(2^m))),N-1)}
A161803
G.f.: A(x) = exp( Sum_{n>=1} A162552(n) * 2*A006519(n) * x^n/n ).
Original entry on oeis.org
1, 2, 0, -2, 6, 12, 0, -8, 24, 44, 0, -30, 54, 104, 0, -60, 238, 466, 0, -402, 924, 1892, 0, -1228, 3264, 6006, 0, -4052, 6688, 13052, 0, -7452, 16536, 32140, 0, -24828, 39660, 85744, 0, -53592, 114336, 212406, 0, -141090, 190754, 386956, 0, -216572, 136078
Offset: 0
G.f.: 1 + 2*x - 2*x^3 + 6*x^4 + 12*x^5 - 8*x^7 + 24*x^8 + 44*x^9 +...
-
{a(n)=local(SQ=sum(m=0, sqrtint(n+1), x^(m^2))+x*O(x^n), L=sum(m=1,n,2*2^valuation(m,2)*polcoeff(log(SQ),m)*x^m)+x*O(x^n)); polcoeff(exp(L),n)}
A318296
Number of conjugacy classes of the Sylow 2-subgroup of the alternating group on n letters.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 7, 7, 9, 9, 11, 11, 18, 18
Offset: 1
Original entry on oeis.org
0, 1, 2, 4, 6, 10, 14, 20, 26, 36, 3, 5, 7, 11, 15, 21, 27, 37, 46, 59, 8, 12, 16, 22, 28, 38, 47, 60, 72, 90, 17, 23, 29, 39, 48, 61, 73, 91, 108, 130, 30, 40, 49, 62, 74, 92, 109, 131, 152, 182, 50, 63, 75, 93, 110, 132, 153, 183, 212, 248, 76, 94, 111, 133, 154, 184, 213, 249
Offset: 0
-
vec_A322010=vecsort(A,,1)[1..vecmin(setminus([1..#A],Set(A)))-1] \\ Assumes the vector A = A322000(1..N) has been computed for some N. Exclude initial 0's to have correct (1-based) indices of the vectors.
Comments