cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-109 of 109 results.

A339277 Number of partitions of 2*n into powers of 2 where every part appears at least 2 times.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 16, 19, 25, 30, 39, 45, 56, 65, 81, 92, 111, 127, 152, 171, 201, 226, 265, 295, 340, 379, 435, 480, 545, 601, 682, 747, 839, 920, 1031, 1123, 1250, 1361, 1513, 1640, 1811, 1963, 2164, 2335, 2561, 2762, 3027, 3253, 3548, 3813, 4153, 4448, 4827, 5167
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 29 2020

Keywords

Examples

			a(4) = 5 because we have [4, 4], [2, 2, 2, 2], [2, 2, 2, 1, 1], [2, 2, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[(1/(1 - x^3)) Product[1/(1 - x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
    A000123[0] = 1; A000123[n_] := A000123[n] = A000123[Floor[n/2]] + A000123[n - 1]; a[n_] := Sum[ChebyshevU[k, -1/2] A000123[n - k], {k, 0, n}]; Table[a[n], {n, 0, 55}]

Formula

G.f.: (1/(1 - x^3)) * Product_{k>=0} 1/(1 - x^(2^k)).
G.f.: (1/(1 - x)) * Product_{k>=0} (1 + x^(2^(k+1))/(1 - x^(2^k))).
a(n) = [x^(2*n)] Product_{k>=0} (1 + x^(2^(k+1))/(1 - x^(2^k))).
a(n) = Sum_{k=0..n} U(k,-1/2) * A000123(n-k), where U(k,x) is the Chebyshev U-polynomial.

A346912 a(0) = 1; a(n) = a(n-1) + a(floor(n/2)) + 1.

Original entry on oeis.org

1, 3, 7, 11, 19, 27, 39, 51, 71, 91, 119, 147, 187, 227, 279, 331, 403, 475, 567, 659, 779, 899, 1047, 1195, 1383, 1571, 1799, 2027, 2307, 2587, 2919, 3251, 3655, 4059, 4535, 5011, 5579, 6147, 6807, 7467, 8247, 9027, 9927, 10827, 11875, 12923, 14119, 15315
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 11 2021

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; procname(n-1) + procname(floor(n/2)) + 1 end proc;
    f(0):= 1:
    map(f, [$1..50]); # Robert Israel, May 04 2025
  • Mathematica
    a[0] = 1; a[n_] := a[n] = a[n - 1] + a[Floor[n/2]] + 1; Table[a[n], {n, 0, 47}]
    nmax = 47; CoefficientList[Series[(1/(1 - x)) (-1 + 2 Product[1/(1 - x^(2^k)), {k, 0, Floor[Log[2, nmax]]}]), {x, 0, nmax}], x]
  • Python
    from itertools import islice
    from collections import deque
    def A346912_gen(): # generator of terms
        aqueue, f, b, a = deque([2]), True, 1, 2
        yield from (1, 3, 7)
        while True:
            a += b
            yield 4*a - 1
            aqueue.append(a)
            if f: b = aqueue.popleft()
            f = not f
    A346912_list = list(islice(A346912_gen(),40)) # Chai Wah Wu, Jun 08 2022

Formula

G.f.: (1/(1 - x)) * (-1 + 2 * Product_{k>=0} 1/(1 - x^(2^k))).
a(n) = n + 1 + Sum_{k=1..n} a(floor(k/2)).
a(n) = 2 * A000123(n) - 1.
a(n) = 4 * A033485(n) - 1 for n > 0. - Hugo Pfoertner, Aug 12 2021
From Michael Tulskikh, Aug 12 2021: (Start)
2*a(2n) = a(2n-1) + a(2n+1).
a(2n) = a(2n-2) + a(n-1) + a(n) + 2.
a(2n) = 2*(Sum_{i=0..n} a(i)) - a(n) + 2n. (End)

A377556 E.g.f.: exp(Sum_{n>=1} A006519(n) * x^n).

Original entry on oeis.org

1, 1, 5, 19, 193, 1181, 13021, 117895, 1868609, 20980153, 348219541, 4940639771, 98898110785, 1632238421269, 34910480911853, 672959412044431, 16733065940227201, 359936040496423025, 9469928134781142949, 229631546862609396643, 6716832478519734558401, 178344294076141938008461
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Sum[2^IntegerExponent[k, 2]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0,nmax]!

A381810 Array read by downward antidiagonals: A(n,k) is a generalization of odd columns of A125790 defined in Comments for n > 0, k >= 0.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 8, 36, 20, 10, 10, 64, 42, 84, 14, 12, 100, 72, 286, 100, 20, 14, 144, 110, 680, 322, 120, 26, 16, 196, 156, 1330, 744, 364, 140, 36, 18, 256, 210, 2300, 1430, 816, 406, 656, 46, 20, 324, 272, 3654, 2444, 1540, 888, 3396, 740, 60, 22, 400, 342, 5456, 3850, 2600, 1650, 10816, 3682, 840, 74
Offset: 1

Views

Author

Mikhail Kurkov, May 05 2025

Keywords

Comments

This is generalization in the sense that first column of A125790 is A000123(2^(n-1)) while in this square array column zero is conjecturally A000123(n).
A(n,k) = v_{A001511(n)} where we start with vector v of fixed length L(n) = A070939(n) with elements v_i = A125790(i,2*k+1), pre-calculate A078121 up to L(n)-th row, reserve t as an empty vector of fixed length L(n) and for i=1..A119387(n+1), for j=1..L(n)-i+1 apply t := v (at the beginning of each cycle for i) and also apply v_j := Sum_{k=1..j+1} A078121(j,k-1)*t_k if R(n,L(n)-i) = 1, otherwise v_j := Sum_{k=1..j+1} A078121(j,k-1)*t_k*(-1)^(j+k+1). Here R(n,k) = floor(n/(2^k)) mod 2 is the (k+1)-th bit in the binary expansion of n.
Conjecture: sequence A(n,k) for fixed n is a polynomial of degree A070939(n).

Examples

			Array begins:
===========================================================
n\k|  0    1     2      3      4      5       6       7 ...
---+-------------------------------------------------------
1  |  2,   4,    6,     8,    10,    12,     14,     16 ...
2  |  4,  16,   36,    64,   100,   144,    196,    256 ...
3  |  6,  20,   42,    72,   110,   156,    210,    272 ...
4  | 10,  84,  286,   680,  1330,  2300,   3654,   5456 ...
5  | 14, 100,  322,   744,  1430,  2444,   3850,   5712 ...
6  | 20, 120,  364,   816,  1540,  2600,   4060,   5984 ...
7  | 26, 140,  406,   888,  1650,  2756,   4270,   6256 ...
8  | 36, 656, 3396, 10816, 26500, 55056, 102116, 174336 ...
  ...
		

Crossrefs

Programs

  • PARI
    upto1(n) = my(v1); v1 = vector(n+1, i, vector(i, j, j==1 || j==i)); for(i=2, n, for(j=1, i-1, v1[i+1][j+1] = sum(k=j-1, i-1, v1[i][k+1]*v1[k+1][j]))); v1
    A(n,m) = my(L = logint(n,2), A = valuation(n,2), B = logint(n>>A,2), v1, v2, v3); v1 = upto1(L+2); v2 = vector(L+2, i, vecsum(v1[i])); for(i=1, 2*m, v2 = vector(L+2, i, sum(j=1, i, v1[i][j]*v2[j]))); for(i=1, B, v3 = v2; for(j=1, L-i+1, v2[j+1] = sum(k=1, j+1, v1[j+1][k]*v3[k+1]*if(!bittest(n,L-i+1), (-1)^(j+k+1), 1)))); v2[A+2]
    
  • PARI
    upto1(n) = my(v1); v1 = vector(n+1, i, vector(i, j, j==1 || j==i)); for(i=2, n, for(j=1, i-1, v1[i+1][j+1] = sum(k=j-1, i-1, v1[i][k+1]*v1[k+1][j]))); v1
    upto2(n,m) = my(L = logint(n,2), A = valuation(n,2), B = logint(n>>A,2), v1, v2, v3, v4, v5); v1 = upto1(L+2); v2 = vector(L+2, i, 1); v3 = vector(m+1, i, 0); for(s=0, m, for(i=1, min(s+1,2), v2 = vector(L+2, i, sum(j=1, i, v1[i][j]*v2[j]))); v4 = v2; for(i=1, B, v5 = v4; for(j=1, L-i+1, v4[j+1] = sum(k=1, j+1, v1[j+1][k]*v5[k+1]*if(!bittest(n,L-i+1), (-1)^(j+k+1), 1)))); v3[s+1] = v4[A+2]); v3 \\ slightly modified version of the first program, some kind of memoization; generates A(n,k) for k=0..m

Formula

A(2^(n-1),k) = A125790(n,2*k+1) for n > 0, k >= 0.
Conjectured formulas: (Start)
A(n,0) = A000123(n) for n > 0.
A(n,k) = Sum_{j=0..k} A000123(A062383(n)*j+n)*A106400(k-j) for n > 0, k >= 0.
If we change v_i = A125790(i,2*k+1) to v_i = A125790(i,2*k) to get similar generalization of even columns, then for resulting array B(n,k) we have B(n,k) = Sum_{j=0..k} A000123(A062383(n)*j+A053645(n))*A106400(k-j) for n > 0, k >= 0.
2*(k+1) divides A(n,k) for n > 0 if (k+1) is a term of A236206.
G.f. for n-th row is f(A070939(n)+1,n) for n > 0 where f(n,k) = (Sum_{(c_0 + c_1 + ... + c_{n-1}) == 2*k (mod 2^n), 0 <= c_i < 2^n, 2^i divides c_i} x^((c_0 + c_1 + ... + c_{n-1} - 2*k)/2^n))/(1-x)^n for n > 0, k >= 0. Similarly, g.f. for n-th row of B(n,k) is f(A070939(n)+1,A053645(n)).
G.f. for n-th row is (Sum_{i=0..L(n)-1} x^i * Sum_{j=0..i} binomial(L(n)+1,j)*A(n,i-j)*(-1)^j)/(1-x)^(L(n)+1) for n > 0 where L(n) = A070939(n).
s(4*n+1) = 1 for n >= 0, s(4*n) = s(4*n+2) = 1 if A010060(n) = 1 for n > 0 where s(n) = A007814(Sum_{k=0..n-1} A(k+1,n-k-1)). (End)

A099729 a(n) = a(n-1)^2 + a(floor(n/2))^2; a(0) = 1.

Original entry on oeis.org

1, 2, 8, 68, 4688, 21977408, 483006462403088, 233295242723145661671791940368, 54426670277251448804881298598338033107084297639402489952768
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 08 2004

Keywords

Crossrefs

Cf. A000123.

Programs

  • Mathematica
    a = ConstantArray[0, 10]; a[[1]]=2; Do[a[[n]] = a[[n-1]]^2 + a[[Floor[n/2]]]^2,{n,2,10}]; Flatten[{1,a}] (* Vaclav Kotesovec, Dec 18 2014 *)

Formula

a(n) ~ c^(2^n), where c = 1.6960426326108078452611100055735661068469295099996784988263600567400352165... . - Vaclav Kotesovec, Dec 18 2014

A152560 a(n) = A131205(A005578(n)).

Original entry on oeis.org

1, 1, 3, 7, 37, 225, 2707, 47991, 1566965, 85002865, 8346008131, 1441358958439, 452666387604933, 257384373709193473, 268828878795481175283, 516988085848458847554135, 1844678455777198460320221077
Offset: 0

Views

Author

Paul D. Hanna, Dec 22 2008

Keywords

Comments

Related to binary partitions (A000123); A131205 is defined by a(n) = a(n-1) + a(floor(n/2)) + a(ceiling(n/2)) and A005578(n) = (2^(n+1)+3+(-1)^n)/6.

Crossrefs

Programs

  • PARI
    {a(n)=local(N=(2^(n+1)+3+(-1)^n)/6,X=x+O(x^N));polcoeff(1/((1-X)^2*prod(m=0,n-1,1-X^(2^m))),N-1)}

A161803 G.f.: A(x) = exp( Sum_{n>=1} A162552(n) * 2*A006519(n) * x^n/n ).

Original entry on oeis.org

1, 2, 0, -2, 6, 12, 0, -8, 24, 44, 0, -30, 54, 104, 0, -60, 238, 466, 0, -402, 924, 1892, 0, -1228, 3264, 6006, 0, -4052, 6688, 13052, 0, -7452, 16536, 32140, 0, -24828, 39660, 85744, 0, -53592, 114336, 212406, 0, -141090, 190754, 386956, 0, -216572, 136078
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2009

Keywords

Comments

A162552 forms the l.g.f. of log[ Sum_{n>=0} x^(n^2) ], while
2*A006519 forms the l.g.f. of binary partitions (A000123) and
A006519(n) is the highest power of 2 dividing n.

Examples

			G.f.: 1 + 2*x - 2*x^3 + 6*x^4 + 12*x^5 - 8*x^7 + 24*x^8 + 44*x^9 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(SQ=sum(m=0, sqrtint(n+1), x^(m^2))+x*O(x^n), L=sum(m=1,n,2*2^valuation(m,2)*polcoeff(log(SQ),m)*x^m)+x*O(x^n)); polcoeff(exp(L),n)}

A318296 Number of conjugacy classes of the Sylow 2-subgroup of the alternating group on n letters.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 7, 7, 9, 9, 11, 11, 18, 18
Offset: 1

Views

Author

Richard Locke Peterson, Aug 23 2018

Keywords

Comments

Also number of partitions of n containing only powers of 2 and having an even number of even elements.
These partitions form a semiring. The semiring uses the following binary operations *,+: Let A=(a1,a2,..,aj) be a partition of k that has j parts with i of those j being powers of 2 greater than 1, written in nonincreasing order. Let B be a partition of y that has x parts, with w of the x being powers of 2 greater than 1, arranged in descending order. Then A+B = (a1,a2,...,aj,b1,b2,...,bx), and A*B=AB=(a1,a2,...,aj)*(b1,b2,...,bx) is defined to be the partition (a1b1,a2b1,...,a1bx,a2b1,...,a2bx,...,ajbx) of ky. Since i and w are even by assumption, the numbers of powers of two in A+B (= i + w) and AB (= ix + jw - iw) must also be even, and both are members of the semiring. In addition, if C = (c1,...cm) is a partition of k into m parts, n of which are powers of two, (AB)C = A(BC) = (a1b1c1,a2b1c1,...,ajbxcm), and (A+B)C = (a1,a2,...,aj,b1,b2,...,bx)(c1,...cm) = (a1c1,a2c1,...,ajcm,b1c1,...) = (a1c1,a2c1,...,ajcm) + (b1c1,b2c1,...,bxcm) = AC + BC, so the necessary criteria for a semiring hold. [Missing parts added by Charlie Neder, Feb 09 2019]

Crossrefs

Formula

a(2n) = a(2n+1) for all n. - Charlie Neder, Feb 09 2019

A322010 Inverse permutation to A322000.

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 14, 20, 26, 36, 3, 5, 7, 11, 15, 21, 27, 37, 46, 59, 8, 12, 16, 22, 28, 38, 47, 60, 72, 90, 17, 23, 29, 39, 48, 61, 73, 91, 108, 130, 30, 40, 49, 62, 74, 92, 109, 131, 152, 182, 50, 63, 75, 93, 110, 132, 153, 183, 212, 248, 76, 94, 111, 133, 154, 184, 213, 249
Offset: 0

Views

Author

M. F. Hasler, Feb 19 2019

Keywords

Comments

a(n) is the position of n in the list A322000 of "decibinary numbers", i.e., integers sorted according to their decibinary value A028897(n) = Sum d[i]*2^i, where d[i] are the decimal digits of n.
For 0 <= m <= 9, we have a(n) = A322003(n) = A000123(n-1), because 1..9 are the first few terms of A322000 where the decibinary value increases.
We see that a(10..19) = a(2..9)+1 concatenated with (46, 49). Then, a(20..29) = a(12..19)+1 concatenated with (72, 90). Then, a(30..39) = a(22..29)+1 concatenated with (108, 130), and so on. This yields an alternate way to compute the sequence.

Crossrefs

Programs

  • PARI
    vec_A322010=vecsort(A,,1)[1..vecmin(setminus([1..#A],Set(A)))-1] \\ Assumes the vector A = A322000(1..N) has been computed for some N. Exclude initial 0's to have correct (1-based) indices of the vectors.
Previous Showing 101-109 of 109 results.