A339643
Number of rooted trees with n nodes colored using exactly 3 colors.
Original entry on oeis.org
0, 0, 9, 102, 870, 6744, 50421, 371676, 2731569, 20113005, 148752507, 1106207331, 8274878880, 62263100994, 471138360426, 3584051515209, 27399942354822, 210432444531798, 1622954350900455, 12565580096217270, 97634810663895132, 761110656740387865, 5951117699678438271
Offset: 1
-
b:= proc(n, k) option remember; `if`(n<2, k*n, (add(add(b(d, k)*
d, d=numtheory[divisors](j))*b(n-j, k), j=1..n-1))/(n-1))
end:
a:= n-> b(n, 3)-3*b(n, 2)+3*b(n, 1):
seq(a(n), n=1..23); # Alois P. Heinz, Dec 11 2020
-
b[n_, k_] := b[n, k] = If[n < 2, k*n, (Sum[Sum[b[d, k]*d, {d, Divisors[j]}]*b[n - j, k], {j, 1, n - 1}])/(n - 1)];
a[n_] := b[n, 3] - 3 b[n, 2] + 3 b[n, 1];
Array[a, 23] (* Jean-François Alcover, Jan 04 2021, after Alois P. Heinz *)
-
\\ See A141610 for U(N,m)
seq(n)={U(n,3) - 3*U(n,2) + 3*U(n,1)}
A363470
G.f. satisfies A(x) = exp( 2 * Sum_{k>=1} A(-x^k) * x^k/k ).
Original entry on oeis.org
1, 2, -1, -6, 7, 42, -58, -366, 513, 3406, -4846, -33310, 48304, 339446, -499133, -3565468, 5294439, 38312242, -57332347, -419177900, 631252549, 4654229300, -7045498256, -52310262192, 79531957334, 593986308994, -906439292326, -6803984285256
Offset: 0
-
seq(n) = my(A=1); for(i=1, n, A=exp(2*sum(k=1, i, subst(A, x, -x^k)*x^k/k)+x*O(x^n))); Vec(A);
A345200
G.f. A(x) satisfies: A(x) = x + x^2 * exp(2 * Sum_{k>=1} A(x^k) / k).
Original entry on oeis.org
1, 1, 2, 5, 12, 32, 84, 234, 652, 1872, 5416, 15922, 47188, 141283, 425910, 1293105, 3948080, 12118619, 37367694, 115708111, 359623780, 1121543440, 3508533500, 11006973980, 34620982004, 109157354769, 344928572562, 1092190467567, 3464955417200, 11012117992012
Offset: 1
-
nmax = 30; A[] = 0; Do[A[x] = x + x^2 Exp[2 Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
a[1] = a[2] = 1; a[n_] := a[n] = (2/(n - 2)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 30}]
A363481
G.f. satisfies A(x) = exp( 2 * Sum_{k>=1} A(2*x^k) * x^k/k ).
Original entry on oeis.org
1, 2, 11, 108, 1969, 67542, 4473663, 582167944, 150236569819, 77226088637142, 79235069050108841, 162432444097491547308, 665648716390456030366881, 5454326724964994060395500598, 89374602386639273949112262243227
Offset: 0
-
seq(n) = my(A=1); for(i=1, n, A=exp(2*sum(k=1, i, subst(A, x, 2*x^k)*x^k/k)+x*O(x^n))); Vec(A);
A007748
Number of self-converse oriented trees with n nodes.
Original entry on oeis.org
1, 1, 1, 2, 3, 7, 10, 26, 39, 107, 160, 458, 702, 2058, 3177, 9498, 14830, 44947, 70678, 216598, 342860, 1059952, 1686486, 5251806, 8393681, 26297238, 42187148, 132856766, 213828802, 676398395, 1091711076
Offset: 1
-
max = 15; A[n_, k_] := A[n, k] = If[n<2, n, Sum[Sum[d*A[d, k], {d, Divisors[j]}] * A[n-j, k]*k, {j, 1, n-1}]/(n-1)]; a[n_] := A[n, 2]; A000151 = Table[a[n], {n, 1, max}]; etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; A005750 = Table[etr[a][n], {n, 0, max}] ; A007748 = Riffle[A005750, A000151] (* Jean-François Alcover, Jul 16 2015 *)
A063881
Number of oriented trees rooted at an arc.
Original entry on oeis.org
1, 4, 18, 80, 367, 1708, 8122, 39204, 191963, 950984, 4759626, 24030736, 122258314, 626162464, 3225926450, 16706775984, 86928097451, 454203897192, 2382255252398, 12537764465072, 66193294753768, 350472816969976, 1860542261745782, 9901018433270812
Offset: 2
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 61, (3.3.7).
-
B:= proc(n) option remember; if n<=1 then unapply(x,x) else unapply(convert(series(x*exp(2*sum(B(n-1)(x^k)/k, k=1..n-1)), x,n+1), polynom),x) fi end: a:= proc(n) local T; T:=B(n-1)(x); add(coeff(T,x,k)* coeff(T,x,n-k), k=1..n-1) end: seq(a(n), n=2..23); # Alois P. Heinz, Aug 23 2008
-
B[n_ /; n <= 1] = Identity; B[n_] := B[n] = Function[x, Evaluate[Normal[Series[x*Exp[2*Sum[B[n-1][x^k]/k, {k, 1, n-1}]], {x, 0, n+1}]]]]; a[n_] := Module[{T}, T = B[n-1][x]; Sum[Coefficient[T, x, k]*Coefficient[T, x, n-k], {k, 1, n-1}]]; Table[a[n], {n, 2, 23}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
A121516
Number of 3-decomposable trees on 3n nodes.
Original entry on oeis.org
2, 10, 84, 788, 8188, 90110, 1035456, 12269932, 148886048, 1840585914, 23099713808, 293535000452, 3769200628592, 48831588116862, 637501117219024, 8378367468484212, 110760388293651950, 1471854299855109782, 19649723961974718686, 263422552838889748560
Offset: 1
-
Nmax := 30 : nmax := 3*Nmax+1 : a := array(0..nmax) ; Dx := proc(z) global nmax, a ; local resul,i ; resul := 0 ; for i from 1 to (nmax+1)/3 do resul := resul+a[3*i]*z^(3*i) : od : RETURN(resul) ; end: exp1 := proc() global nmax, a ; local m,t ; t := 0 ; for m from 1 to nmax do t := t+3*Dx(x^m)/m ; od: return( taylor(exp(t),x=0,nmax+1) ) ; end: exp2 := proc() global nmax, a ; local m,t ; t := 0 ; for m from 1 to nmax do t := t+(Dx(x^m)+Dx(x^(2*m)))/m ; od: return( taylor(exp(t),x=0,nmax+1) ) ; end: DD := Dx(x)-3*x^3*exp1()/2-x^3*exp2()/2 : for i from 0 to nmax do a[i] := solve(coeftayl(DD,x=0,i),a[i]) ; if i mod 3 = 0 then print(a[i]) ; fi ; end: # R. J. Mathar, Sep 17 2006
-
terms = 20; A[_] = 0;
Do[A[x_] = (3x^3/2)Exp[Sum[(3/m)A[x^m], {m, 3 terms}]]+(x^3/2)Exp[Sum[(1/m) (A[x^m]+A[x^(2m)]), {m, 3terms}]] + O[x]^(3terms+1) // Normal, 3terms+1];
DeleteCases[CoefficientList[A[x], x], 0] (* Jean-François Alcover, Apr 07 2020 *)
A335601
The number of mixed trees with n nodes and n-2 arcs.
Original entry on oeis.org
1, 2, 10, 40, 187, 854, 4074, 19602, 96035, 475492, 2380042, 12015368, 61130186, 313081232, 1612967974, 8353387992, 43464071199, 227101948596, 1191127734498, 6268882232536, 33096647906860, 175236408484988, 930271133498794, 4950509216635406, 26403755607304762, 141119182968584618
Offset: 2
A345878
G.f. A(x) satisfies: A(x) = x / exp(2 * Sum_{k>=1} A(x^k) / k).
Original entry on oeis.org
1, -2, 5, -18, 70, -282, 1179, -5104, 22634, -102128, 467637, -2168208, 10157664, -48005858, 228607728, -1095885048, 5284044080, -25609804110, 124693451466, -609641464746, 2991742731876, -14731354000792, 72761153346680, -360397156557696, 1789733084330806, -8909067981051118
Offset: 1
-
a:= proc(n) option remember; `if`(n=1, 1, -2*add(a(n-k)*add(
d*a(d), d=numtheory[divisors](k)), k=1..n-1)/(n-1))
end:
seq(a(n), n=1..26); # Alois P. Heinz, Jun 28 2021
-
nmax = 26; A[] = 0; Do[A[x] = x/Exp[2 Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
a[1] = 1; a[n_] := a[n] = -(2/(n - 1)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 26}]
A345884
G.f. A(x) satisfies: A(x) = x * exp(2 * Sum_{k>=1} (-1)^k * A(x^k) / k).
Original entry on oeis.org
1, -2, 7, -26, 103, -442, 1982, -9122, 42985, -206526, 1007322, -4974066, 24819268, -124949782, 633882799, -3237261340, 16629986395, -85873762466, 445491479309, -2320717519612, 12134813554225, -63667883444468, 335083404759136, -1768545061282712, 9358571746569760
Offset: 1
-
a:= proc(n) option remember; `if`(n=1, 1, 2*add(a(n-k)*add(d*a(d)
*(-1)^(k/d), d=numtheory[divisors](k)), k=1..n-1)/(n-1))
end:
seq(a(n), n=1..25); # Alois P. Heinz, Jun 28 2021
-
nmax = 25; A[] = 0; Do[A[x] = x Exp[2 Sum[(-1)^k A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
a[1] = 1; a[n_] := a[n] = (2/(n - 1)) Sum[Sum[(-1)^(k/d) d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 25}]
Comments