cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 41 results. Next

A380241 Array read by antidiagonals: T(n,k) is the number of rooted (2k)-regular planar maps with n vertices, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 9, 1, 1, 1, 14, 100, 54, 1, 1, 1, 42, 1225, 3000, 378, 1, 1, 1, 132, 15876, 171500, 110000, 2916, 1, 1, 1, 429, 213444, 10001880, 30012500, 4550000, 24057, 1, 1, 1, 1430, 2944656, 591666768, 7981500240, 5987493750, 204000000, 208494, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 22 2025

Keywords

Comments

The zeroth column is included by convention only for consistency with the first row sequences.
The case for regular planar maps of odd valency is more complicated and without simple closed form formulas, so not presented in this sequence. See the references for additional information.

Examples

			Array begins:
====================================================================
n\k | 0  1      2          3               4                   5 ...
----+---------------------------------------------------------------
  0 | 1  1      1          1               1                   1 ...
  1 | 1  1      2          5              14                  42 ...
  2 | 1  1      9        100            1225               15876 ...
  3 | 1  1     54       3000          171500            10001880 ...
  4 | 1  1    378     110000        30012500          7981500240 ...
  5 | 1  1   2916    4550000      5987493750       7304332956480 ...
  6 | 1  1  24057  204000000   1302227368750    7310748066293952 ...
  7 | 1  1 208494 9690000000 301107909375000 7794097754539041792 ...
  ...
		

Crossrefs

Columns 0..3 are A000012 twice, A000168, A380242.
Rows 0..3 are A000012, A000108, A060150, A380243.
Cf. A269920.

Programs

  • PARI
    T(n,k)=if(k==0, 1, 2*binomial(2*k-1,k)^n*(n*k)!/(n!*(n*k - n + 2)!))

Formula

T(n,k) = 2*binomial(2*k-1, k)^n*(n*k)!/(n!*(n*k - n + 2)!) for k > 0.

A380242 Number of rooted 6-regular planar maps with n vertices.

Original entry on oeis.org

1, 5, 100, 3000, 110000, 4550000, 204000000, 9690000000, 480700000000, 24667500000000, 1300650000000000, 70122000000000000, 3851316000000000000, 214878980000000000000, 12151776800000000000000, 695297229000000000000000, 40193385270000000000000000, 2344614140750000000000000000
Offset: 0

Views

Author

Andrew Howroyd, Jan 22 2025

Keywords

Crossrefs

Column k=3 of A380241.

Programs

  • PARI
    a(n) = 2*10^n*(3*n)!/(n!*(2*n + 2)!)

Formula

a(n) = 2*10^n*(3*n)!/(n!*(2*n + 2)!).

A232546 Expansion of (1 - 12*x)^(3/2) in powers of x.

Original entry on oeis.org

1, -18, 54, 108, 486, 2916, 20412, 157464, 1299078, 11258676, 101328084, 939587688, 8926083036, 86514343272, 852784240824, 8527842408240, 86344404383430, 883760374277460, 9132190534200420, 95167038198509640, 999253901084351220, 10563541240034570040
Offset: 0

Views

Author

Michael Somos, Nov 25 2013

Keywords

Comments

From Ralf Steiner, Apr 04 2017: (Start)
By analytic continuation to the entire complex plane there exist regularized values for divergent sums such as:
Sum_{k>=0} a(k)^2/16^k = 2F1(-3/2,-3/2,1,9).
Sum_{k>=0} a(k) / 6^k = -i. (End)

Examples

			G.f. = 1 - 18*x + 54*x^2 + 108*x^3 + 486*x^4 + 2916*x^5 + 20412*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1 - 12 x)^(3/2), {x, 0, n}];
    Table[9/Sqrt[Pi] 12^n Gamma[-1/2 + n]/Gamma[2 + n], {n, -1, 20}] (* Ralf Steiner, Apr 01 2017 *)
    Flatten[{1, -18, Table[4*3^(n+1)*(2*n-4)!/((n-2)!*n!), {n, 2, 25}]}] (* Vaclav Kotesovec, Apr 02 2017 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 - 12 * x + x * O(x^n))^(3/2), n))};

Formula

0 = a(n+2)*(a(n+1) - 42*a(n)) + 18*a(n+1)*(a(n+1) + 8*a(n)) for all n in Z.
a(n+2) = 54 * A000168(n). a(n) = 3^n * A002421(n). Convolution inverse of A115903.
a(n) = 6*(2*n-5)*a(n-1)/n. - R. J. Mathar, Nov 23 2014
G.f.: 1F0(-3/2;;12x). - R. J. Mathar, Aug 09 2015
For n>=2, a(n) = 4*3^(n+1)*(2*n-4)! / ((n-2)!*n!). - Vaclav Kotesovec, Apr 02 2017
Sum_{k>=0} a(k) / 12^k = 0. - Ralf Steiner, Apr 04 2017

A379437 Number of rooted 2-connected simple planar maps with n edges.

Original entry on oeis.org

1, 1, 6, 16, 71, 267, 1162
Offset: 3

Views

Author

Andrew Howroyd, Jan 16 2025

Keywords

Comments

A simple planar map is a planar map without loops or parallel edges.

Crossrefs

Cf. A000139, A000168, A006406 (sensed), A006407 (unsensed).

A101486 Square array T(n,k), read by antidiagonals: number of labeled trees, with increments of labels along edges constrained to -1,0,1, with n nodes that have no label greater than k.

Original entry on oeis.org

1, 1, 2, 1, 3, 9, 1, 3, 17, 54, 1, 3, 18, 119, 378, 1, 3, 18, 134, 932, 2916, 1, 3, 18, 135, 1111, 7838, 24057, 1, 3, 18, 135, 1133, 9833, 69275, 208494, 1, 3, 18, 135, 1134, 10176, 90959, 635279, 1876446, 1, 3, 18, 135, 1134, 10205, 95635, 868827, 5994584, 222646205
Offset: 0

Views

Author

Ralf Stephan, Jan 21 2005

Keywords

Comments

Rows converge to A005159.
First row is A000168.

Examples

			1,2,9,54,378,2916,24057,208494,1876446,17399772,
1,3,17,119,932,7838,69275,635279,5994584,57872666,
1,3,18,134,1111,9833,90959,868827,8504314,84866778,
1,3,18,135,1133,10176,95635,928442,9236144,93646430,
1,3,18,135,1134,10205,96191,937361,9365984,95427597,
1,3,18,135,1134,10206,96227,938179,9381050,95673739,
1,3,18,135,1134,10206,96228,938222,9382179,95697199,
1,3,18,135,1134,10206,96228,938223,9382229,95698688,
		

Crossrefs

Programs

  • Mathematica
    nmax = 9;
    b[t_] = 2/(1 + Sqrt[1 - 12t]) + O[t]^(nmax+1);
    c[t_] = (1 + Sqrt[1 - 12t] - t (8 + Sqrt[2] Sqrt[(1 + Sqrt[1 - 12t] - 2 (7 + 4 Sqrt[1 - 12t]) t + 24t^2)/t^2]))/(4t) + O[t]^(nmax+1) // Simplify[#, t > 0]&;
    a[n_, t_] := a[n, t] = b[t] (1 - c[t]^(n + 1)) (1 - c[t]^(n + 4))/((1 - c[t]^(n+2)) (1 - c[t]^(n+3))) + O[t]^(nmax+1) // Simplify[#, t > 0]&;
    T[n_, k_] := SeriesCoefficient[a[n, t], {t, 0, k}];
    Table[T[n - k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)

Formula

G.f. of k-th row: A(t)=B(t)*(1-C(t)^(k+1))*(1-C(t)^(k+4))/[(1-C(t)^(k+2))*(1-C(t)^(k+3))], with B(t) the g.f. of A005159 and C(t) the g.f. of A101487.

A173794 Partial sums of A006384.

Original entry on oeis.org

1, 3, 7, 21, 78, 390, 2461, 17491, 135226, 1103076, 9371892, 82205622, 740254762, 6814312822, 63920746639, 609452784251, 5894288690288, 57728196873452, 571747727911362, 5719672404523644, 57737110684330278, 587604181217075742
Offset: 0

Views

Author

Jonathan Vos Post, Feb 24 2010

Keywords

Comments

Partial sums of number of planar maps with n edges. The subsequence of primes in this partial sum begins: 3, 7, 17491, and no more known.

Examples

			a(21) = 1 + 2 + 4 + 14 + 57 + 312 + 2071 + 15030 + 117735 + 967850 + 8268816 + 72833730 + 658049140 + 6074058060 + 57106433817 + 545532037612 + 5284835906037 + 51833908183164 + 514019531037910 + 5147924676612282 + 52017438279806634 + 529867070532745464.
		

Crossrefs

Programs

  • Mathematica
    q[n_?OddQ]:= 3^((n-1)/2)*CatalanNumber[(n-1)/2];
    q[n_?EvenQ]:= 3^((n-2)/2)*(2*(n-1)/(n+2))*CatalanNumber[(n-2)/2];
    f[n_]:= f[n]= Sum[EulerPhi[n/k]*3^k*Binomial[2*k, k], {k, Most[Divisors[n]]}];
    A006384[n_]:= If[n==0, 1, (1/(2*n))*(2*(3^n/(n+2))*CatalanNumber[n] +f[n] + 2*n*q[n])];
    Table[Sum[A006384[j], {j,0,n}], {n,0,50}] (* G. C. Greubel, Jul 14 2021 *)

Formula

a(n) = Sum_{i=0..n} A006384(i).

A246323 Triangle read by rows: T(n,k) = number of normal planar lambda terms of size n with k free variables (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 2, 1, 9, 6, 2, 54, 40, 20, 5, 378, 295, 175, 70, 14, 2916, 2346, 1526, 756, 252, 42, 24057, 19739, 13587, 7602, 3234, 924, 132, 208494, 173426, 123978, 74964, 36828, 13728, 3432, 429
Offset: 1

Views

Author

N. J. A. Sloane, Aug 28 2014

Keywords

Examples

			Triangle begins:
1
2,1
9,6,2
54,40,20,5
378,295,175,70,14
2916,2346,1526,756,252,42
24057,19739,13587,7602,3234,924,132,
208494,173426,123978,74964,36828,13728,3432,429
...
		

Crossrefs

A275607 a(n) = 2*12^n*Gamma(n+1/2)*(n+1)/(sqrt(Pi)*Gamma(n+3)).

Original entry on oeis.org

1, 4, 27, 216, 1890, 17496, 168399, 1667952, 16888014, 173997720, 1818276174, 19225409616, 205299909828, 2210922105840, 23984556773175, 261854925711840, 2874948871877910, 31722346066169880, 351589335566716170, 3912422681494285200, 43694647856506630620, 489597172255515289680
Offset: 0

Views

Author

Karol A. Penson, Nov 14 2016

Keywords

Comments

In reference of K. Szymanski et al. the function g(x) from the Eq.(4.6) satisfies the equality g(x/4)/4 = W(x) where W(x) is the weight function of the integral representation, see below.

Crossrefs

Programs

  • Maple
    a := n -> (2^(2*n+1)*3^n*(n+1)*GAMMA(n+1/2))/(sqrt(Pi)*GAMMA(n+3)):
    seq(a(n), n=0..21); # Peter Luschny, Nov 14 2016
  • Mathematica
    g[z_] :=  E^z (BesselI[0,z] - (1-1/z) BesselI[1,z])
    Table[CoefficientList[2/3 Series[g[6z], {z,0,21}],z]] Range[0, 21]! //Flatten (* Peter Luschny, Nov 14 2016 *)
    Table[ 2*12^n*(n + 1)*Gamma[n + 1/2]/(Sqrt[Pi]*Gamma[n + 3]), {n,0,100}] (* G. C. Greubel, Jan 13 2017 *)
  • PARI
    a(n)=2*12^n*gamma(n+1/2)*(n+1)\/(sqrt(Pi)*(n+2)!) \\ Charles R Greathouse IV, Nov 14 2016
    
  • PARI
    a(n)=2*3^n*binomial(2*n+1,n-1)*(n+1)/(2*n+1)/n \\ Charles R Greathouse IV, Nov 14 2016

Formula

O.g.f: (1/54)*(1-(6*z+1)*sqrt(1-12*z))/z^2;
E.g.f.(in Maple notation): (1/9)*exp(6*z)*(6*z*(BesselI(0,6*z)-BesselI(1,6*z))+ BesselI(1,6*z))/z;
Recurrence: (-12*n^2-54*n-54)*a(n+1)+(n^2+6*n+8)*a(n+2)=0, n=0,1..., for the initial values a(0)=1, a(1)=4.
Integral representation as the n-th Hausdorff moment of the positive function W(x) on the segment x=(0,12), i.e., a(n) = Integral_{x=0..12} x^n*W(x) dx, where W(x) = (1/27)*sqrt(12-x)*(3+(1/2)*x)/(Pi*sqrt(x)). This representation is unique.
a(n) ~ 2^(2*n+1)*3^n/(sqrt(Pi)*n^(3/2)). - Ilya Gutkovskiy, Nov 14 2016
a(n) = 2*3^n*binomial(2n+1, n-1)*(n+1)/(2n^2+n). - Charles R Greathouse IV, Nov 14 2016

A318106 Triangle read by rows: T(n,k) is the number of rooted maps with n edges whose core comprises k edges, 1 <= k <= n.

Original entry on oeis.org

2, 8, 1, 44, 8, 2, 288, 60, 24, 6, 2106, 464, 228, 96, 22, 16632, 3742, 2048, 1104, 440, 91, 138996, 31392, 18246, 11328, 5940, 2184, 408, 1213056, 272592, 163896, 111048, 68640, 33852, 11424, 1938, 10955412, 2438208, 1493012, 1070016, 736230, 435344, 199920, 62016, 9614, 101721744, 22369365, 13816224, 10270752, 7602408, 5079438, 2833152, 1209312, 346104, 49335
Offset: 1

Views

Author

Gheorghe Coserea, Sep 22 2018

Keywords

Examples

			A(x;t) = 2*t*x + (8*t + t^2)*x^2 + (44*t + 8*t^2 + 2*t^3)*x^3 + ...
Triangle starts:
n\k [1]       [2]      [3]      [4]      [5]     [6]     [7]     [8]    [9]
[1] 2;
[2] 8,        1;
[3] 44,       8,       2;
[4] 288,      60,      24,      6;
[5] 2106,     464,     228,     96,      22;
[6] 16632,    3742,    2048,    1104,    440,    91;
[7] 138996,   31392,   18246,   11328,   5940,   2184,   408;
[8] 1213056,  272592,  163896,  111048,  68640,  33852,  11424,  1938;
[9] 10955412, 2438208, 1493012, 1070016, 736230, 435344, 199920, 62016, 9614;
[10]...
		

Crossrefs

Row sums give A000168 for n>=1.
Main diagonal give A000139(n-1) for n>=1.

Programs

  • Mathematica
    A000139[x_] = 2/(3x) (HypergeometricPFQ[{-2/3, -1/3}, {1/2}, (27/4) x]-1);
    A000168[x_] = HypergeometricPFQ[{1/2, 1}, {3}, 12 x];
    h[x_] = x A000168[x]^2;
    A[x_, t_] := t h[x] A000139[t h[x]];
    Rest[CoefficientList[#, t]]& /@ Rest[CoefficientList[A[x, t] + O[x]^11, x]] // Flatten (* Jean-François Alcover, Aug 29 2019 *)
  • PARI
    seq(N) = {
      my(x='x + O('x^(N+3)),  m=(-1 + 18*x + (1-12*x)^(3/2))/(54*x^2),
         h=x*m^2, c=subst(m, 'x, serreverse(h)));
      apply(Vecrev, Vec((subst(c, 'x, 't*h) - 1)/'t));
    };
    seq(10)

Formula

G.f.: A(x;t) = t*h*A000139(t*h), where h=x*A000168(x)^2 (see eqn. (15) in Banderier link).

A361137 Number of rooted maps of genus 1/2 with n edges.

Original entry on oeis.org

1, 10, 98, 983, 10062, 105024, 1112757, 11934910, 129307100, 1412855500, 15548498902, 172168201088, 1916619748084, 21436209373224, 240741065193282, 2713584138389838
Offset: 1

Views

Author

R. J. Mathar, Mar 02 2023

Keywords

Crossrefs

Cf. A000168 (genus 0).
Previous Showing 31-40 of 41 results. Next