A380241
Array read by antidiagonals: T(n,k) is the number of rooted (2k)-regular planar maps with n vertices, n >= 0, k >= 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 9, 1, 1, 1, 14, 100, 54, 1, 1, 1, 42, 1225, 3000, 378, 1, 1, 1, 132, 15876, 171500, 110000, 2916, 1, 1, 1, 429, 213444, 10001880, 30012500, 4550000, 24057, 1, 1, 1, 1430, 2944656, 591666768, 7981500240, 5987493750, 204000000, 208494, 1, 1
Offset: 0
Array begins:
====================================================================
n\k | 0 1 2 3 4 5 ...
----+---------------------------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 1 1 2 5 14 42 ...
2 | 1 1 9 100 1225 15876 ...
3 | 1 1 54 3000 171500 10001880 ...
4 | 1 1 378 110000 30012500 7981500240 ...
5 | 1 1 2916 4550000 5987493750 7304332956480 ...
6 | 1 1 24057 204000000 1302227368750 7310748066293952 ...
7 | 1 1 208494 9690000000 301107909375000 7794097754539041792 ...
...
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
- E. A. Bender and E. R. Canfield, The number of degree restricted rooted maps on the sphere, SIAM J. Discrete Math. 7 (1994) 9-15.
- Zhicheng Gao and Mizan Rahman, Enumeration of k-poles, Annals of Combinatorics 1 (1997), pp. 55-66.
- W. T. Tutte, A Census of Slicings, Canad. J. Math. 14 (1962), 708-722.
- W. T. Tutte, A Census of Planar Maps, Canad. J. Math. 15 (1963), 249-271.
-
T(n,k)=if(k==0, 1, 2*binomial(2*k-1,k)^n*(n*k)!/(n!*(n*k - n + 2)!))
A380242
Number of rooted 6-regular planar maps with n vertices.
Original entry on oeis.org
1, 5, 100, 3000, 110000, 4550000, 204000000, 9690000000, 480700000000, 24667500000000, 1300650000000000, 70122000000000000, 3851316000000000000, 214878980000000000000, 12151776800000000000000, 695297229000000000000000, 40193385270000000000000000, 2344614140750000000000000000
Offset: 0
A232546
Expansion of (1 - 12*x)^(3/2) in powers of x.
Original entry on oeis.org
1, -18, 54, 108, 486, 2916, 20412, 157464, 1299078, 11258676, 101328084, 939587688, 8926083036, 86514343272, 852784240824, 8527842408240, 86344404383430, 883760374277460, 9132190534200420, 95167038198509640, 999253901084351220, 10563541240034570040
Offset: 0
G.f. = 1 - 18*x + 54*x^2 + 108*x^3 + 486*x^4 + 2916*x^5 + 20412*x^6 + ...
-
a[ n_] := SeriesCoefficient[ (1 - 12 x)^(3/2), {x, 0, n}];
Table[9/Sqrt[Pi] 12^n Gamma[-1/2 + n]/Gamma[2 + n], {n, -1, 20}] (* Ralf Steiner, Apr 01 2017 *)
Flatten[{1, -18, Table[4*3^(n+1)*(2*n-4)!/((n-2)!*n!), {n, 2, 25}]}] (* Vaclav Kotesovec, Apr 02 2017 *)
-
{a(n) = if( n<0, 0, polcoeff( (1 - 12 * x + x * O(x^n))^(3/2), n))};
A379437
Number of rooted 2-connected simple planar maps with n edges.
Original entry on oeis.org
1, 1, 6, 16, 71, 267, 1162
Offset: 3
A101486
Square array T(n,k), read by antidiagonals: number of labeled trees, with increments of labels along edges constrained to -1,0,1, with n nodes that have no label greater than k.
Original entry on oeis.org
1, 1, 2, 1, 3, 9, 1, 3, 17, 54, 1, 3, 18, 119, 378, 1, 3, 18, 134, 932, 2916, 1, 3, 18, 135, 1111, 7838, 24057, 1, 3, 18, 135, 1133, 9833, 69275, 208494, 1, 3, 18, 135, 1134, 10176, 90959, 635279, 1876446, 1, 3, 18, 135, 1134, 10205, 95635, 868827, 5994584, 222646205
Offset: 0
1,2,9,54,378,2916,24057,208494,1876446,17399772,
1,3,17,119,932,7838,69275,635279,5994584,57872666,
1,3,18,134,1111,9833,90959,868827,8504314,84866778,
1,3,18,135,1133,10176,95635,928442,9236144,93646430,
1,3,18,135,1134,10205,96191,937361,9365984,95427597,
1,3,18,135,1134,10206,96227,938179,9381050,95673739,
1,3,18,135,1134,10206,96228,938222,9382179,95697199,
1,3,18,135,1134,10206,96228,938223,9382229,95698688,
-
nmax = 9;
b[t_] = 2/(1 + Sqrt[1 - 12t]) + O[t]^(nmax+1);
c[t_] = (1 + Sqrt[1 - 12t] - t (8 + Sqrt[2] Sqrt[(1 + Sqrt[1 - 12t] - 2 (7 + 4 Sqrt[1 - 12t]) t + 24t^2)/t^2]))/(4t) + O[t]^(nmax+1) // Simplify[#, t > 0]&;
a[n_, t_] := a[n, t] = b[t] (1 - c[t]^(n + 1)) (1 - c[t]^(n + 4))/((1 - c[t]^(n+2)) (1 - c[t]^(n+3))) + O[t]^(nmax+1) // Simplify[#, t > 0]&;
T[n_, k_] := SeriesCoefficient[a[n, t], {t, 0, k}];
Table[T[n - k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)
Original entry on oeis.org
1, 3, 7, 21, 78, 390, 2461, 17491, 135226, 1103076, 9371892, 82205622, 740254762, 6814312822, 63920746639, 609452784251, 5894288690288, 57728196873452, 571747727911362, 5719672404523644, 57737110684330278, 587604181217075742
Offset: 0
a(21) = 1 + 2 + 4 + 14 + 57 + 312 + 2071 + 15030 + 117735 + 967850 + 8268816 + 72833730 + 658049140 + 6074058060 + 57106433817 + 545532037612 + 5284835906037 + 51833908183164 + 514019531037910 + 5147924676612282 + 52017438279806634 + 529867070532745464.
-
q[n_?OddQ]:= 3^((n-1)/2)*CatalanNumber[(n-1)/2];
q[n_?EvenQ]:= 3^((n-2)/2)*(2*(n-1)/(n+2))*CatalanNumber[(n-2)/2];
f[n_]:= f[n]= Sum[EulerPhi[n/k]*3^k*Binomial[2*k, k], {k, Most[Divisors[n]]}];
A006384[n_]:= If[n==0, 1, (1/(2*n))*(2*(3^n/(n+2))*CatalanNumber[n] +f[n] + 2*n*q[n])];
Table[Sum[A006384[j], {j,0,n}], {n,0,50}] (* G. C. Greubel, Jul 14 2021 *)
A246323
Triangle read by rows: T(n,k) = number of normal planar lambda terms of size n with k free variables (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 2, 1, 9, 6, 2, 54, 40, 20, 5, 378, 295, 175, 70, 14, 2916, 2346, 1526, 756, 252, 42, 24057, 19739, 13587, 7602, 3234, 924, 132, 208494, 173426, 123978, 74964, 36828, 13728, 3432, 429
Offset: 1
Triangle begins:
1
2,1
9,6,2
54,40,20,5
378,295,175,70,14
2916,2346,1526,756,252,42
24057,19739,13587,7602,3234,924,132,
208494,173426,123978,74964,36828,13728,3432,429
...
A275607
a(n) = 2*12^n*Gamma(n+1/2)*(n+1)/(sqrt(Pi)*Gamma(n+3)).
Original entry on oeis.org
1, 4, 27, 216, 1890, 17496, 168399, 1667952, 16888014, 173997720, 1818276174, 19225409616, 205299909828, 2210922105840, 23984556773175, 261854925711840, 2874948871877910, 31722346066169880, 351589335566716170, 3912422681494285200, 43694647856506630620, 489597172255515289680
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..925
- Simeon T. Stefanov, Counting fixed points free vector fields on B^2, arXiv:1807.03714 [math.GT], 2018.
- K. Szymanski, B. Collins, T. Szarek and K. Zyczkowski, Convex set of quantum states with positive partial transpose analysed by hit and run algorithm, arXiv:1611.01194 [quant-ph], 2016.
-
a := n -> (2^(2*n+1)*3^n*(n+1)*GAMMA(n+1/2))/(sqrt(Pi)*GAMMA(n+3)):
seq(a(n), n=0..21); # Peter Luschny, Nov 14 2016
-
g[z_] := E^z (BesselI[0,z] - (1-1/z) BesselI[1,z])
Table[CoefficientList[2/3 Series[g[6z], {z,0,21}],z]] Range[0, 21]! //Flatten (* Peter Luschny, Nov 14 2016 *)
Table[ 2*12^n*(n + 1)*Gamma[n + 1/2]/(Sqrt[Pi]*Gamma[n + 3]), {n,0,100}] (* G. C. Greubel, Jan 13 2017 *)
-
a(n)=2*12^n*gamma(n+1/2)*(n+1)\/(sqrt(Pi)*(n+2)!) \\ Charles R Greathouse IV, Nov 14 2016
-
a(n)=2*3^n*binomial(2*n+1,n-1)*(n+1)/(2*n+1)/n \\ Charles R Greathouse IV, Nov 14 2016
A318106
Triangle read by rows: T(n,k) is the number of rooted maps with n edges whose core comprises k edges, 1 <= k <= n.
Original entry on oeis.org
2, 8, 1, 44, 8, 2, 288, 60, 24, 6, 2106, 464, 228, 96, 22, 16632, 3742, 2048, 1104, 440, 91, 138996, 31392, 18246, 11328, 5940, 2184, 408, 1213056, 272592, 163896, 111048, 68640, 33852, 11424, 1938, 10955412, 2438208, 1493012, 1070016, 736230, 435344, 199920, 62016, 9614, 101721744, 22369365, 13816224, 10270752, 7602408, 5079438, 2833152, 1209312, 346104, 49335
Offset: 1
A(x;t) = 2*t*x + (8*t + t^2)*x^2 + (44*t + 8*t^2 + 2*t^3)*x^3 + ...
Triangle starts:
n\k [1] [2] [3] [4] [5] [6] [7] [8] [9]
[1] 2;
[2] 8, 1;
[3] 44, 8, 2;
[4] 288, 60, 24, 6;
[5] 2106, 464, 228, 96, 22;
[6] 16632, 3742, 2048, 1104, 440, 91;
[7] 138996, 31392, 18246, 11328, 5940, 2184, 408;
[8] 1213056, 272592, 163896, 111048, 68640, 33852, 11424, 1938;
[9] 10955412, 2438208, 1493012, 1070016, 736230, 435344, 199920, 62016, 9614;
[10]...
- Gheorghe Coserea, Rows n=1..202, flattened
- Cyril Banderier, Philippe Flajolet, Gilles Schaeffer, Michele Soria, Random maps, coalescing saddles, singularity analysis, and Airy phenomena, Random Structures and Algorithms 19(3-4), 2001.
Main diagonal give
A000139(n-1) for n>=1.
-
A000139[x_] = 2/(3x) (HypergeometricPFQ[{-2/3, -1/3}, {1/2}, (27/4) x]-1);
A000168[x_] = HypergeometricPFQ[{1/2, 1}, {3}, 12 x];
h[x_] = x A000168[x]^2;
A[x_, t_] := t h[x] A000139[t h[x]];
Rest[CoefficientList[#, t]]& /@ Rest[CoefficientList[A[x, t] + O[x]^11, x]] // Flatten (* Jean-François Alcover, Aug 29 2019 *)
-
seq(N) = {
my(x='x + O('x^(N+3)), m=(-1 + 18*x + (1-12*x)^(3/2))/(54*x^2),
h=x*m^2, c=subst(m, 'x, serreverse(h)));
apply(Vecrev, Vec((subst(c, 'x, 't*h) - 1)/'t));
};
seq(10)
A361137
Number of rooted maps of genus 1/2 with n edges.
Original entry on oeis.org
1, 10, 98, 983, 10062, 105024, 1112757, 11934910, 129307100, 1412855500, 15548498902, 172168201088, 1916619748084, 21436209373224, 240741065193282, 2713584138389838
Offset: 1
Comments