cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 141 results. Next

A216353 G.f.: A(x) = exp( Sum_{n>=1} A000172(n)^3*x^n/n ) where Franel number A000172(n) = Sum_{k=0..n} C(n,k)^3.

Original entry on oeis.org

1, 8, 532, 62624, 10964914, 2399234384, 609215149096, 171739556144192, 52316948995446679, 16918106849112020088, 5736533516906891508780, 2021549577502367744673888, 735516733692051220039803750, 274907827442478316252748869104, 105138174536582510069969443280760
Offset: 0

Views

Author

Paul D. Hanna, Sep 04 2012

Keywords

Examples

			G.f.: A(x) = 1 + 8*x + 532*x^2 + 62624*x^3 + 10964914*x^4 + 2399234384*x^5 +...
where
log(A(x)) = 2^3*x + 10^3*x^2/2 + 56^3*x^3/3 + 346^3*x^4/4 + 2252^3*x^5/5 + 15184^3*x^6/6 + 104960^3*x^7/7 +...+ A000172(n)^3*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^3)^3*x^m*1^m/m+x*O(x^n)))); polcoeff(A, n)}
    for(n=0, 31, print1(a(n), ", "))

A216355 G.f.: A(x) = exp( Sum_{n>=1} A000172(n^2)*x^n/n ) where Franel number A000172(n) = Sum_{k=0..n} C(n,k)^3.

Original entry on oeis.org

1, 2, 175, 1760658, 1583078442003, 109611485085305859618, 547114144500297420116784959134, 189879050147329004652707990280499398833960, 4482752989702739533106941067588051779825642693578987967, 7097288803262045586874332782527584396862908242415791224663533782367102
Offset: 0

Views

Author

Paul D. Hanna, Sep 04 2012

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 175*x^2 + 1760658*x^3 + 1583078442003*x^4 +...
where
log(A(x)) = 2*x + 346*x^2/2 + 5280932*x^3/3 + 6332299624282*x^4/4 + 548057409594239814752*x^5/5 +...+ A000172(n^2)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m^2, binomial(m^2, j)^3)*x^m/m+x*O(x^n)))); polcoeff(A, n)}
    for(n=0, 31, print1(a(n), ", "))

A225776 Determinant of the (n+1) X (n+1) matrix with (i,j)-entry equal to f(i+j) for all i,j = 0,...,n, where f(k) = A000172(k) is the k-th Franel number.

Original entry on oeis.org

1, 6, 180, 28296, 23762160, 103179627360, 2242514387116224, 244558402519846478976, 136585911664795732792710912, 392586698202941899973146848809472, 5721548125375080140228462836137111413760
Offset: 0

Views

Author

Zhi-Wei Sun, Aug 14 2013

Keywords

Comments

Conjecture: a(n)/6^n is always a positive odd integer. Moreover, for any integers r > 1 and n >= 0, the number a(r,n)/2^n is a positive odd integer, where a(r,n) denotes the Hankel determinant |f(r,i+j)|{i,j=0,...,n} with f(r,k) = sum{j=0}^k C(k,j)^r.
On Aug 20 2013, Zhi-Wei Sun made the following conjecture: If p is a prime congruent to 1 mod 4 but p is not congruent to 1 mod 24, then p divides a((p-1)/2).

Examples

			a(0) = 1 since f(0+0) = 1.
		

Crossrefs

Cf. A000172.

Programs

  • Mathematica
    f[n_]:=Sum[Binomial[n,k]^3,{k,0,n}]; a[n_]:=Det[Table[f[i+j],{i,0,n},{j,0,n}]]; Table[a[n],{n,0,10}]

A088220 Coefficient of x^n in g.f.^n is A000172(n).

Original entry on oeis.org

1, 2, 3, 4, 9, 24, 75, 252, 903, 3376, 13068, 51960, 211222, 874440, 3676335, 15660680, 67474980, 293617248, 1288876879, 5701688928, 25397905302, 113838544880, 513117505278, 2324638603980, 10580591966824, 48362627748240
Offset: 0

Views

Author

Michael Somos, Sep 24 2003

Keywords

Crossrefs

Cf. A242903.

Programs

  • PARI
    a(n)=polcoeff(x/serreverse(x*exp(sum(m=1, n+1, sum(k=0, m, binomial(m, k)^3)*x^m/m +x^2*O(x^n)))),n)
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, May 25 2014

Formula

G.f.: x / Series_Reversion( x*exp( Sum_{n>=1} A000172(n)*x^n/n ) ), where A000172(n) is the n-th Franel number. - Paul D. Hanna, May 25 2014

A199813 G.f.: exp( Sum_{n>=1} A000984(n)*A000172(n) * x^n/n ), which involves central binomial coefficients (A000984) and Franel numbers (A000172).

Original entry on oeis.org

1, 4, 38, 504, 8249, 154036, 3149326, 68741880, 1576163328, 37548785408, 922252542128, 23222906277952, 596981991939677, 15616173859832740, 414621835401615110, 11150969618415168280, 303278916800906999191, 8330190277527648516572, 230814933905555392525290
Offset: 0

Views

Author

Paul D. Hanna, Nov 10 2011

Keywords

Comments

Sum_{k=0..n} C(n,k)^2 = A000984(n) defines central binomial coefficients.
Sum_{k=0..n} C(n,k)^3 = A000172(n) defines Franel numbers.

Examples

			G.f.: A(x) = 1 + 4*x + 38*x^2 + 504*x^3 + 8249*x^4 + 154036*x^5 +...
where
log(A(x)) = 2*2*x + 6*10*x^2/2 + 20*56*x^3/3 + 70*346*x^4/4 + 252*2252*x^5/5 + 924*15184*x^6/6 +...+ A000984(n)*A000172(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,binomial(2*m, m)*sum(k=0, m, binomial(m, k)^3)*x^m/m)+x*O(x^n)),n)}

A242903 G.f. A(x) satisfies: coefficient of x^n in A(x)^(2*n) equals A000172(n) = Sum_{k=0..n} C(n,k)^3, the n-th Franel number.

Original entry on oeis.org

1, 1, 1, 1, 3, 8, 26, 89, 324, 1225, 4786, 19170, 78408, 326275, 1377772, 5891401, 25467509, 111144579, 489145720, 2168854885, 9681072845, 43473716527, 196286934526, 890640262188, 4059500301390, 18579693200838, 85360357637580, 393548515741979, 1820335724153452, 8445294476235727, 39291407672079211
Offset: 0

Views

Author

Paul D. Hanna, May 25 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + 3*x^4 + 8*x^5 + 26*x^6 + 89*x^7 + 324*x^8 +...
Form a table of coefficients in A(x)^(2*n) as follows:
[1,  0,   0,    0,    0,     0,      0,      0,       0,       0, ...];
[1,  2,   3,    4,    9,    24,     75,    252,     903,    3376, ...];
[1,  4,  10,   20,   43,   108,    316,   1020,    3537,   12908, ...];
[1,  6,  21,   56,  138,   354,   1002,   3120,   10485,   37318, ...];
[1,  8,  36,  120,  346,   960,   2756,   8448,   27723,   96440, ...];
[1, 10,  55,  220,  735,  2252,   6785,  21020,   68340,  233870, ...];
[1, 12,  78,  364, 1389,  4716,  15184,  48588,  159186,  541424, ...];
[1, 14, 105,  560, 2408,  9030,  31304, 104960,  351792, 1203244, ...];
[1, 16, 136,  816, 3908, 16096,  60184, 213152,  739162, 2570464, ...];
[1, 18, 171, 1140, 6021, 27072, 109047, 409500, 1480293, 5280932, ...]; ...
then the main diagonal forms the Franel numbers:
[1, 2, 10, 56, 346, 2252, 15184, 104960, 739162, 5280932, ...].
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sqrt(x/serreverse(x*exp(sum(m=1, n+1, sum(k=0, m, binomial(m, k)^3)*x^m/m +x^2*O(x^n))))),n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: sqrt( x / Series_Reversion( x*exp( Sum_{n>=1} A000172(n)*x^n/n ) ) ), where A000172(n) is the n-th Franel number.
[x^n] A(x)^(2*n+2) = (n+1)*A166990(n).
Convolution square-root of A088220.

A058854 a(n) = largest prime in the factorization of n-th Franel number (A000172).

Original entry on oeis.org

2, 5, 7, 173, 563, 73, 41, 369581, 1409, 109, 449, 176459, 44221, 12148537, 148381, 11399977, 5779337237, 151431487, 26013917, 57405011, 939783003793, 277157, 191141, 13515438731, 79702499, 236463558839, 1883371283883863, 313527009031, 138961158000728258971
Offset: 1

Views

Author

Felix Goldberg (felixg(AT)tx.technion.ac.il), Jan 30 2001

Keywords

Examples

			a(4)=173 because the 4th Franel number is 346 = 2^1 * 173^1, in which 173 is the largest prime.
		

Crossrefs

Cf. A000172.

Programs

  • Maple
    with(combinat): with(numtheory): A000172 := n->sum(binomial(n,k)^3, k=0..n): for n from 1 to 50 do printf(`%d,`, sort(ifactors(A000172(n))[2])[nops(ifactors(A000172(n))[2])][1]) od: # Corrected by Sean A. Irvine, Aug 31 2022
    # second Maple program:
    a:= n-> max(numtheory[factorset](add(binomial(n, k)^3, k=0..n))):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 31 2022
  • Mathematica
    Do[ Print[ FactorInteger[ Sum[ Binomial[n, k]^3, {k, 0, n}]] [[ -1, 1]] ], {n, 1, 32} ]

Extensions

More terms from James Sellers, Feb 01 2001
Data corrected and entry revised by Sean A. Irvine, Aug 31 2022

A199816 G.f.: exp( Sum_{n>=1} A000984(n)*A000172(n)/4 * x^n/n ), which involves central binomial coefficients (A000984) and Franel numbers (A000172).

Original entry on oeis.org

1, 1, 8, 101, 1639, 30665, 630225, 13836981, 319062453, 7640441894, 188534274850, 4767113222750, 122998902095908, 3228067183537455, 85960229675478804, 2317956019913480326, 63193008693741620771, 1739473925024629613227, 48292271242981605779173
Offset: 0

Views

Author

Paul D. Hanna, Nov 11 2011

Keywords

Comments

Sum_{k=0..n} C(n,k)^2 = A000984(n) defines central binomial coefficients.
Sum_{k=0..n} C(n,k)^3 = A000172(n) defines Franel numbers.
Compare to the g.f. of the Catalan numbers (A000108): exp(Sum_{n>=1} A000984(n)/2*x^n/n) and to the g.f. of A166991: exp(Sum_{n>=1} A000172(n)/2*x^n/n).

Examples

			G.f.: A(x) = 1 + x + 8*x^2 + 101*x^3 + 1639*x^4 + 30665*x^5 +...
where
log(A(x)) = 1*1*x + 3*5*x^2/2 + 10*28*x^3/3 + 35*173*x^4/4 + 126*1126*x^5/5 + 462*7592*x^6/6 +...+ A000984(n)/2*A000172(n)/2*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, binomial(2*m, m)/2*sum(k=0, m, binomial(m, k)^3)/2*x^m/m)+x*O(x^n)), n)}

Formula

Convolution 4th power yields A199813.

A216356 a(n) = A000172(n^2), where Franel number A000172(n) = Sum_{k=0..n} C(n,k)^3.

Original entry on oeis.org

1, 2, 346, 5280932, 6332299624282, 548057409594239814752, 3282684865686445066146128050420, 1329153351023643434414727317328867397924832, 35862023917618878200052422822926970148356592776600354650, 63875599229358329592315180101212796802405282289343043273094466311541144
Offset: 0

Views

Author

Paul D. Hanna, Sep 04 2012

Keywords

Examples

			L.g.f.: L(x) = 2*x + 346*x^2/2 + 5280932*x^3/3 + 6332299624282*x^4/4 + 548057409594239814752*x^5/5 +...
where exp(L(x)) = 1 + 2*x + 175*x^2 + 1760658*x^3 + 1583078442003*x^4 + 109611485085305859618*x^5 +...+ A216355(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0, n^2, binomial(n^2, k)^3)}
    for(n=0, 15, print1(a(n), ", "))

Formula

Forms the logarithmic derivative of A216355 after ignoring initial term a(0).

A207318 a(n) = Sum_{k=0..n-1} (-1)^k*A000172(k).

Original entry on oeis.org

0, 1, -1, 9, -47, 299, -1953, 13231, -91729, 647433, -4633499, 33531761, -244884159, 1802040241, -13346305519, 99392117841, -743734839215, 5588564785067, -42148760792553, 318928716891883, -2420342154102853, 18416484881248743, -140466988872011009, 1073705008744247231, -8223501739695527745
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2012

Keywords

Programs

  • Mathematica
    Flatten[{0,Table[Sum[(-1)^k*Sum[Binomial[k,j]^3,{j,0,k}],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Jan 31 2014 *)

Formula

Conjecture: (n-1)^2*a(n) +(2*n-3)*(3*n-5)*a(n-1) +(-15*n^2+53*n-48)*a(n-2) +8*(n-2)^2*a(n-3)=0. - R. J. Mathar, Nov 28 2013
a(n) ~ (-1)^(n+1) * sqrt(3) * 2^(3*n+1) / (27*Pi*n). - Vaclav Kotesovec, Jan 31 2014
Previous Showing 11-20 of 141 results. Next