Original entry on oeis.org
1, 4, 96, 15360, 17203200, 138726604800, 8203736501452800, 3603868630142209228800, 11873738053102139590311936000, 295578185800614925763054760099840000, 55920479534877093093661639943174183976960000
Offset: 1
-
[2^Binomial(n,2)*(&*[Binomial(2*k,k): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Feb 19 2024
-
f[j_] := 2 j - 1; z = 15;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203516 *)
Table[v[n + 1]/(4 v[n]), {n, 1, z - 1}] (* A034910 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203517 *)
Table[2^(-1/24 - 3*n/2 + 3*n^2/2) * Glaisher^(3/2) * Pi^(1/4 - n/2) * BarnesG[1/2 + n] / E^(1/8) / BarnesG[1 + n], {n, 1, 12}] (* Vaclav Kotesovec, Sep 01 2023 *)
-
[2^binomial(n,2)*product(binomial(2*k,k) for k in range(n)) for n in range(1,21)] # G. C. Greubel, Feb 19 2024
A282564
Real part of A000178(n) * Sum_{k=0..n} i^k/k!, where i = sqrt(-1).
Original entry on oeis.org
1, 1, 1, 6, 156, 18720, 13443840, 67756953600, 2732085780480000, 991419288020582400000, 3597660477435617162035200000, 143607093745702043133526671360000000, 68788027941331539080620236035063808000000000, 428344480781652673551035086691251861743206400000000000
Offset: 0
For n = 4, a(4) = 156, which is the real part of A000178(4)*(1/0! + i/1! - 1/2! - i/3! + 1/4!) = 156+240*i.
The corresponding imaginary part is
A282567.
-
a(n) = real(prod(k=0, n, k!) * sum(k=0, n, I^k/k!));
A282567
Imaginary part of A000178(n) * Sum_{k=0..n} i^k/k!, where i = sqrt(-1).
Original entry on oeis.org
0, 1, 2, 10, 240, 29088, 20943360, 105529651200, 4254955536384000, 1544043321627770880000, 5603024405522854969344000000, 223654797931768113135574056960000000, 107131006056993617020920990202331136000000000, 667107003169139201955908457896071963607040000000000000
Offset: 0
For n = 4, a(4) = 240, which is the imaginary part of A000178(4)*(1/0! + i/1! - 1/2! - i/3! + 1/4!) = 156+240*i.
The corresponding real part is
A282564.
-
a(n) = imag(prod(k=0, n, k!) * sum(k=0, n, I^k/k!));
A379742
a(n) is the number of divisors of A000178(n).
Original entry on oeis.org
1, 1, 2, 6, 18, 72, 234, 1088, 3600, 10416, 28080, 124080, 387828, 1921024, 6926400, 20941344, 54934880, 251328000, 810152280, 4254092800, 15266200950, 46208448000, 129674387920, 640501862400, 2197261252368, 6404827161600, 17436935577600, 43314231340800, 101062601640000, 436914124416000, 1355859833328000, 7074064925491200
Offset: 0
-
DivisorSigma[0, FoldList[Times, Range[0, 30]!]] (* Paolo Xausa, Jan 06 2025 *)
-
a(n)=numdiv(prod(k=1,n,k!));
vector(30,n,a(n-1)) \\ Joerg Arndt, Jan 02 2025
-
a(n) = {my(prd = 1); forprime(p = 2, n, prd *= (1 + (n*(n+1)/2 - 1 - sum(i = 2, n, sumdigits(i, p)))/(p-1))); prd;} \\ Amiram Eldar, Jan 15 2025
A089501
Built from superfactorials A000178.
Original entry on oeis.org
1, 6, 2880, 870912000, 637129677864960000, 3076276241856388273274880000000, 218470761021769399142244567460557619200000000000, 444747235963340607791337561259087696911923105885061120000000000000000
Offset: 0
A107251
Supercatalan numbers SF(2n)/(SF(n)*SF(n+1)) where SF is the superfactorial function A000178.
Original entry on oeis.org
1, 1, 12, 7200, 508032000, 7742895390720000, 40797452088662556672000000, 108985983996792124183843071590400000000, 203800994173724454677862841368011757060096000000000000
Offset: 0
a(3) = 1!*2!*3!*4!*5!*6!/(1!*2!*3!*1!*2!*3!*4!) = 24883200/(12*288) = 7200.
Cf.
A000108 for original Catalan numbers (2n)!/(n!*(n+1)!).
A192668
Floor-Sqrt transform of superfactorials (A000178).
Original entry on oeis.org
1, 1, 1, 3, 16, 185, 4988, 354134, 71109667, 42836123450, 81600285441318, 515548511098996334, 11283348939893661586501, 890385701589932763452676123, 262895016275494870674135139820802, 300629890583706167610723324054426034948
Offset: 0
- Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
-
Table[Floor[Sqrt[Product[k!,{k,0,n}]]],{n,0,18}]
-
makelist(floor(sqrt(product(k!,k,0,n))),n,0,12);
-
a(n) = sqrtint(prod(k=0, n, k!)); \\ Michel Marcus, Apr 08 2021
A193478
G.f. A(x) satisfies: 1/(1-x) = Sum_{n>=0} A(x)^n/sf(n), where A(x) = Sum_{n>=1} a(n)*x^n/sf(n), and sf(n) = Product_{k=0..n} k! is the superfactorial of n (A000178).
Original entry on oeis.org
1, 1, 5, 95, 9959, 6270119, 28519938719, 1045680030158399, 349874346597600908159, 1178635679994967168072291199, 44013684086180240167822552866892799, 19826711369458419136710617483545735797772799, 116690731684609551482643899854886684445978037938815999
Offset: 1
A(x) = x + x^2/(1!*2!) + 5*x^3/(1!*2!*3!) + 95*x^4/(1!*2!*3!*4!) + 9959*x^5/ (1!*2!*3!*4!*5!) + 6270119*x^6/(1!*2!*3!*4!*5!*6!) +...+ a(n)*x^n/sf(n) +...
where
1/(1-x) = 1 + A(x) + A(x)^2/(1!*2!) + A(x)^3/(1!*2!*3!) + A(x)^4/(1!*2!*3!*4!) + A(x)^5/(1!*2!*3!*4!*5!) + A(x)^6/(1!*2!*3!*4!*5!*6!) +...+ A(x)^n/sf(n) +...
and sf(n) = 0!*1!*2!*3!*...*(n-1)!*n!.
-
{a(n)=local(A=sum(m=1,n-1,a(m)*x^m/prod(k=0,m,k!))+O(x^(n+2)));
prod(k=0,n,k!)*polcoeff(1/(1-x)-sum(m=0,n,A^m/prod(k=0,m,k!)),n)}
A193479
G.f. A(x) satisfies: 1+x = Sum_{n>=0} A(x)^n/sf(n), where A(x) = Sum_{n>=1} a(n)*x^n/sf(n), and sf(n) = Product_{k=0..n} k! is the superfactorial of n (A000178).
Original entry on oeis.org
1, -1, 5, -121, 16199, -13857481, 86631572159, -4470597876144961, 2126428452257713430399, -10305779379533133607589385601, 557802385738943120790269629003660799, -366846102335019802908345392106358106684889601, 3169417347948517943104654704100947667168800468999705599
Offset: 1
A(x) = x - x^2/(1!*2!) + 5*x^3/(1!*2!*3!) - 121*x^4/(1!*2!*3!*4!) + 16199*x^5/(1!*2!*3!*4!*5!) - 13857481*x^6/(1!*2!*3!*4!*5!*6!) +...+ a(n)*x^n/sf(n) +...
where
1+x = 1 + A(x) + A(x)^2/(1!*2!) + A(x)^3/(1!*2!*3!) + A(x)^4/(1!*2!*3!*4!) + A(x)^5/(1!*2!*3!*4!*5!) + A(x)^6/(1!*2!*3!*4!*5!*6!) +...+ A(x)^n/sf(n) +...
and sf(n) = 0!*1!*2!*3!*...*(n-1)!*n!.
-
{a(n)=local(A=sum(m=1,n-1,a(m)*x^m/prod(k=0,m,k!))+O(x^(n+2)));
prod(k=0,n,k!)*polcoeff(1+x-sum(m=0,n,A^m/prod(k=0,m,k!)),n)}
A198892
E.g.f.: 1/[ Sum_{n>=0} (-x)^(n*(n+1)/2) / A000178(n) ] where A000178(n) = Product_{k=1..n} k!.
Original entry on oeis.org
1, 1, 2, 9, 48, 300, 2280, 20580, 211680, 2434320, 31134600, 438807600, 6744276000, 112237725600, 2011760150400, 38639999197800, 791610365145600, 17230493212732800, 397111119429024000, 9660782144094681600, 247393077222459168000, 6651976858409613931200
Offset: 0
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 48*x^4/4! + 300*x^5/5! +...
where
1/A(x) = 1 - x/1! - x^3/(1!*2!) + x^6/(1!*2!*3!) + x^10/(1!*2!*3!*4!) - x^15/(1!*2!*3!*4!*5!) - x^21/(1!*2!*3!*4!*5!*6!) ++--...
1/A(x) = 1 - x - x^3/2 + x^6/12 + x^10/288 - x^15/34560 - x^21/24883200 +...
-
{a(n) = my(A=1/sum(m=0,sqrtint(2*n+1), (-x)^(m*(m+1)/2) / prod(k=1,m,k!)+x*O(x^n))); n!*polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
Comments