cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 153 results. Next

A294895 a(n) = Product_{d|n, gcd(d,n/d)>1} prime(gcd(d,n/d)-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 4, 1, 1, 1, 20, 1, 9, 1, 4, 1, 1, 1, 16, 7, 1, 9, 4, 1, 1, 1, 100, 1, 1, 1, 396, 1, 1, 1, 16, 1, 1, 1, 4, 9, 1, 1, 400, 13, 49, 1, 4, 1, 81, 1, 16, 1, 1, 1, 16, 1, 1, 9, 1700, 1, 1, 1, 4, 1, 1, 1, 17424, 1, 1, 49, 4, 1, 1, 1, 400, 171, 1, 1, 16, 1, 1, 1, 16, 1, 81, 1, 4, 1, 1, 1, 10000, 1, 169, 9, 4508, 1, 1, 1, 16, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2017

Keywords

Comments

For all i, j: a(i) = a(j) => A294897(i) = A294897(j).

Crossrefs

Cf. A005117 (the positions of ones).

Programs

  • Mathematica
    A294895[n_] := Times @@ Prime[Select[Map[GCD[#, n/#] &, Divisors[n]], #>1 &] - 1];
    Array[A294895, 100] (* Paolo Xausa, Feb 22 2024 *)
  • PARI
    A294895(n) = { my(m=1); fordiv(n,d,if(gcd(d,n/d)>1, m *= prime(gcd(d,n/d)-1))); m; };

Formula

a(n) = Product_{d|n} A008578(gcd(d,n/d)).
a(n) = A064989(A294876(n)).
For n >= 1, A001222(a(n)) = A048105(n).
For n > 1, 1+A061395(a(n)) = A000188(n).

A295658 Multiplicative with a(p^e) = p^max(0,(floor(e/2)-1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 28 2017

Keywords

Comments

a(n) differs from A053164(n) = A000188(A000188(n)) for the first time at n=64, where a(64) = 4, while A053164(64) = 2.

Examples

			For n = 64 = 2^6, a(64) = 2^(floor(6/2)-1) = 2^2 = 4.
		

Crossrefs

Cf. A046100 (positions of ones), A157289.

Programs

  • Mathematica
    f[p_, e_] := p^Max[0, Floor[e/2-1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 30 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^max(0, floor(f[i,2]/2-1)));} \\ Amiram Eldar, Nov 30 2022

Formula

a(1) = 1; for n > 1, a(n) = A020639(n)^max(0,A004526(A067029(n))-1) * a(A028234(n)).
a(n) = A003557(A000188(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3)/zeta(6) = 1.181564... (A157289). - Amiram Eldar, Nov 30 2022

A329602 Square root of largest square dividing A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 6, 2, 1, 2, 1, 2, 6, 4, 1, 6, 1, 2, 6, 2, 1, 4, 30, 2, 6, 2, 1, 6, 1, 4, 6, 2, 30, 12, 1, 2, 6, 4, 1, 6, 1, 2, 6, 2, 1, 4, 210, 30, 6, 2, 1, 12, 30, 4, 6, 2, 1, 12, 1, 2, 6, 8, 30, 6, 1, 2, 6, 30, 1, 12, 1, 2, 30, 2, 210, 6, 1, 4, 36, 2, 1, 12, 30, 2, 6, 4, 1, 12, 210, 2, 6, 2, 30, 8, 1, 210, 6, 60, 1, 6, 1, 4, 30
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A000188(A108951(n)).

A337110 Number of length three 1..n vectors that contain their geometric mean.

Original entry on oeis.org

1, 2, 3, 10, 11, 12, 13, 20, 33, 34, 35, 42, 43, 44, 45, 64, 65, 78, 79, 86, 87, 88, 89, 96, 121, 122, 135, 142, 143, 144, 145, 164, 165, 166, 167, 198, 199, 200, 201, 208, 209, 210, 211, 218, 231, 232, 233, 252, 289, 314, 315, 322, 323, 336, 337, 344, 345, 346
Offset: 1

Views

Author

Hywel Normington, Aug 16 2020

Keywords

Comments

From David A. Corneth, Aug 26 2020: (Start)
If x^2 == 0 (mod n) has only 1 solution then a(n) = a(n-1) + 1. Proof:
Let (a, b, n) be such a tuple. Let without loss of generality b be the geometric mean of the tuple. Then a*b*n = b^3 and as b is not 0 we have b^2 = a*n. So then b^2 == 0 (mod n). If b^2 == 0 (mod n) has only 1 solution then b = n. This gives the tuple (n, n, n) which has 1 permutation. So giving a(n) = a(n-1) + 1. (End)

Examples

			For n = 2, the a(2) = 2 solutions are: (1,1,1) and (2,2,2).
For n = 4, the a(4) = 10 solutions are: (1,1,1),(2,2,2),(3,3,3),(4,4,4) and the 6 permutations of (1,2,4).
		

Crossrefs

Programs

  • PARI
    first(n) = {my(s = 0, res = vector(n)); for(i = 1, n, s+=b(i); res[i] = s ); res }
    b(n) = { my(s = factorback(factor(n)[, 1]), res = 1); for(i = 1, n \ s - 1, c = (s*i)^2/n; if(denominator(c) == 1 && c <= n, res+=6; ) ); res } \\ David A. Corneth, Aug 26 2020

Formula

a(n) = a(n-1) + 1 + 6*A057918(n).

A382890 The square root of the largest square dividing the n-th cubefree number.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 7, 5, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 7, 3, 10, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Apr 07 2025

Keywords

Comments

The product of the non-unitary prime divisors of the n-th cubefree number.
Also, the square root of the powerful part of the n-th cubefree number.
All the terms are squarefree.

Crossrefs

Cf. A000188, A004709, A005117, A057521, A371188 (positions of 1's).
Similar sequences: A382888, A382889, A382891.

Programs

  • Mathematica
    f[p_, e_] := p^If[e == 1, 0, 1]; s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;; , 2]], # < 3 &], Times @@ f @@@ fct, Nothing]]; Array[s, 100]
  • PARI
    list(lim) = {my(f); print1(1, ", "); for(k = 2, lim, f = factor(k); if(vecmax(f[, 2]) < 3, print1(prod(i = 1, #f~, f[i, 1]^if(f[i, 2] == 1, 0, 1)), ", ")));}

Formula

a(n) = A000188(A004709(n)).
a(n) = sqrt(A382889(n)).
a(n) = A004709(n)/A382888(n).
a(n) = sqrt(A004709(n)/A382891(n)).
a(A371188(n)) = 1.

A055654 Difference between n and the result of "Phi-summation" over unitary divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 3, 2, 0, 0, 3, 0, 0, 0, 7, 0, 4, 0, 5, 0, 0, 0, 9, 4, 0, 8, 7, 0, 0, 0, 15, 0, 0, 0, 15, 0, 0, 0, 15, 0, 0, 0, 11, 10, 0, 0, 21, 6, 8, 0, 13, 0, 16, 0, 21, 0, 0, 0, 15, 0, 0, 14, 31, 0, 0, 0, 17, 0, 0, 0, 37, 0, 0, 12, 19, 0, 0, 0, 35, 26, 0, 0, 21, 0, 0, 0, 33, 0, 20, 0, 23
Offset: 1

Views

Author

Labos Elemer, Jun 07 2000

Keywords

Comments

Squarefree numbers are roots of a(n)=0 equation, while Min n for which a(n)=k is k^2. See also A000188, A008833.

Crossrefs

Programs

  • Haskell
    a055654 n = a055654_list !! (n-1)
    a055654_list = zipWith (-) [1..] a055653_list
    -- Reinhard Zumkeller, Mar 11 2012
    
  • Mathematica
    Table[n - DivisorSum[n, EulerPhi[#] &, CoprimeQ[#, n/#] &], {n, 92}] (* Michael De Vlieger, Oct 26 2017 *)
    f[p_, e_] := p^e - p^(e-1) + 1; a[1] = 0; a[n_] := n - Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 04 2024 *)
  • PARI
    a(n) = n - sumdiv(n, d, if (gcd(d, n/d)==1, eulerphi(d))); \\ Michel Marcus, Oct 27 2017
    
  • PARI
    a(n) = {my(f = factor(n)); n - prod(k = 1, #f~, f[k,1]^f[k,2] - f[k,1]^(f[k,2] - 1) + 1);} \\ Amiram Eldar, Oct 04 2024

Formula

a(n) = n - Sum_{u|n, gcd(u,n/u) = 1} phi(u), i.e. when u is a unitary divisor of n.
a(n) = n - A055653(n). - Sean A. Irvine, Mar 30 2022
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 - A065465 = 0.11848616... . - Amiram Eldar, Oct 04 2024

A056044 Let k be the largest number such that k^2 divides n! and let m be the largest number such that m!^2 divides n!; a(n) = k/m!.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 2, 2, 2, 6, 3, 3, 2, 2, 2, 2, 2, 2, 2, 10, 10, 30, 2, 2, 12, 12, 3, 3, 6, 30, 10, 10, 10, 30, 6, 6, 2, 2, 2, 30, 60, 60, 30, 210, 42, 42, 42, 42, 1, 1, 2, 2, 4, 4, 4, 4, 4, 84, 21, 21, 14, 14, 14, 42, 6, 6, 2, 2, 2, 10, 10, 70, 140, 140, 14, 126, 3, 3, 6, 30
Offset: 1

Views

Author

Labos Elemer, Jul 25 2000

Keywords

Examples

			For n = 11, 11! = 6! * 6! * 77, so A000188(11!) = A056038(11) = 6! and a(11) = 6!/6! = 1.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; b[1] = 1; b[n_] := Times @@ f @@@ FactorInteger[n!];
    c[n_] := Module[{k = 1}, NestWhile[#/(++k)^2 &, n!, IntegerQ]; (k-1)!];
    a[n_] := b[n] / c[n]; Array[a, 100] (* Amiram Eldar, May 24 2024 *)

Formula

a(n) = A000188(n!)/A056038(n).

Extensions

Name corrected by Amiram Eldar, May 24 2024

A056627 a(n) = A056622(n!).

Original entry on oeis.org

1, 1, 1, 1, 1, 12, 12, 12, 36, 720, 720, 480, 480, 1680, 3024, 12096, 12096, 145152, 145152, 7257600, 345600, 1900800, 1900800, 136857600, 684288000, 4447872000, 4447872000, 435891456000, 435891456000, 3138418483200, 3138418483200, 6276836966400, 190207180800
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

Previous name "Square root of largest unitary square divisor of n!" was incorrect. See A374989 for the correct sequence with this name. - Amiram Eldar, Jul 26 2024

Examples

			a(12) = A056622(12!) = A000188(12!)/A055229(12!) = 1440/3 = 480.
		

Crossrefs

Programs

Formula

a(n) = A055772(n)/A055230(n) = A000188(n!)/A055229(n!).
a(n) = A056622(n!). - Michel Marcus, Aug 16 2020
a(n) = sqrt(A056628(n)). - Amiram Eldar, Jul 08 2024

Extensions

More terms from Michel Marcus, Aug 16 2020
Incorrect name replaced with a formula by Amiram Eldar, Jul 26 2024

A069292 Sum of square roots of square divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, Sqrt@ # &, And[IntegerQ@ Sqrt@ #, # <= Sqrt@ n] &], {n, 105}] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    A069292(n) = { my(r="NA"); sumdiv(n, d, (issquare(d,&r)&&((d^2)<=n))*r); } \\ Antti Karttunen, Nov 20 2017

Formula

G.f.: Sum_{k>=1} k * x^(k^4) / (1 - x^(k^2)). - Ilya Gutkovskiy, Aug 19 2021

Extensions

More terms from Antti Karttunen, Nov 20 2017

A283989 Largest square dividing prime factorization representation of the n-th Stern polynomial: a(n) = A008833(A260443(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 9, 1, 1, 1, 9, 25, 9, 1, 225, 1, 1, 1, 9, 25, 225, 49, 2025, 25, 225, 1, 225, 1225, 225, 1, 11025, 1, 1, 1, 9, 25, 11025, 49, 50625, 1225, 275625, 121, 2480625, 30625, 1265625, 49, 2480625, 1225, 11025, 1, 11025, 1225, 275625, 5929, 2480625, 1225, 275625
Offset: 0

Views

Author

Antti Karttunen, Mar 25 2017

Keywords

Crossrefs

Cf. A023758 (positions of ones).

Programs

Formula

a(n) = A008833(A260443(n)).
a(n) = A260443(n) / A277330(n).
a(n) = A283983(n)^2.
a(2n) = A003961(a(n)).
Previous Showing 91-100 of 153 results. Next