cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 335 results. Next

A203806 G.f.: exp( Sum_{n>=1} A000204(n)^6 * x^n/n ) where A000204 is the Lucas numbers.

Original entry on oeis.org

1, 1, 365, 1730, 97390, 948562, 26292937, 370813165, 7716851405, 127699557640, 2397734250216, 42004273130216, 763345960355450, 13608990417046650, 245008471017094450, 4389301146029065420, 78826300825689660420, 1413927351334191841100, 25376664633745265522450
Offset: 0

Views

Author

Paul D. Hanna, Jan 06 2012

Keywords

Comments

More generally, exp(Sum_{k>=1} A000204(k)^(2*n) * x^k/k) = 1/(1 - (-1)^n*x)^binomial(2*n,n) * Product_{k=1..n} 1/(1 - (-1)^(n-k)*A000204(2*k)*x + x^2)^binomial(2*n,n-k).

Examples

			G.f.: A(x) = 1 + x + 365*x^2 + 1730*x^3 + 97390*x^4 + 948562*x^5 + ...
where
log(A(x)) = x + 3^6*x^2/2 + 4^6*x^3/3 + 7^6*x^4/4 + 11^6*x^5/5 + 18^6*x^6/6 + 29^6*x^7/7 + 47^6*x^8/8 + ... + Lucas(n)^6*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1 + x)^20*(1 - 3*x + x^2)^15*(1 + 7*x + x^2)^6*(1 - 18*x + x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
  • PARI
    /* Subroutine used in PARI programs below: */
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^6*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n,m=3)=polcoeff(1/(1 - (-1)^m*x+x*O(x^n))^binomial(2*m,m) * prod(k=1,m,1/(1 - (-1)^(m-k)*Lucas(2*k)*x + x^2+x*O(x^n))^binomial(2*m,m-k)),n)}

Formula

G.f.: 1/( (1+x)^20 * (1-3*x+x^2)^15 * (1+7*x+x^2)^6 * (1-18*x+x^2) ).
G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A203856(n) where A203856(n) = (1/n)*Sum_{d|n} moebius(n/d)*Lucas(d)^5.

A156216 G.f.: A(x) = exp( Sum_{n>=1} A000204(n)^n * x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 1, 5, 26, 634, 32928, 5704263, 2470113915, 2978904483553, 9401949327631932, 79268874871208384494, 1762019469678472912173354, 103537245443913551792800303420, 16030602885085486700462431379649694
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2009

Keywords

Comments

Compare to g.f. of Fibonacci sequence: exp( Sum_{n>=1} A000204(n)*x^n/n ), where A000204 is the Lucas numbers.
More generally, if exp( Sum_{n>=1} C(n) * x^n/n ) equals a power series in x with integer coefficients, then exp( Sum_{n>=1} C(n)^n * x^n/n ) also equals a power series in x with integer coefficients (conjecture).

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 26*x^3 + 634*x^4 + 32928*x^5 + 5704263*x^6 +...
log(A(x)) = x + 3^2*x^2/2 + 4^3*x^3/3 + 7^4*x^4/4 + 11^5*x^5/5 + 18^6*x^6/6 +...
		

Crossrefs

Cf. A067961. [From Paul D. Hanna, Sep 13 2010]

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,(fibonacci(m+1)+fibonacci(m-1))^m*x^m/m)+x*O(x^n)),n)}

Formula

a(n) = (1/n)*Sum_{k=1..n} A000204(k)^k*a(n-k) for n>0, with a(0) = 1.
Logarithmic derivative forms A067961. [From Paul D. Hanna, Sep 13 2010]

A203805 G.f.: exp( Sum_{n>=1} A000204(n)^5 * x^n/n ) where A000204 is the Lucas numbers.

Original entry on oeis.org

1, 1, 122, 463, 11985, 85456, 1262166, 12018742, 145326748, 1540766090, 17495016342, 191731126832, 2138972609189, 23652975370501, 262682339212290, 2911255335387883, 32296421465575573, 358120616523262016, 3971885483375619384, 44047530724737577400
Offset: 0

Views

Author

Paul D. Hanna, Jan 06 2012

Keywords

Comments

More generally, exp(Sum_{k>=1} A000204(k)^(2*n+1) * x^k/k) = Product_{k=0..n} 1/(1 - (-1)^(n-k)*A000204(2*k+1)*x - x^2)^binomial(2*n+1,n-k).

Examples

			G.f.: A(x) = 1 + x + 122*x^2 + 463*x^3 + 11985*x^4 + 85456*x^5 + ...
where
log(A(x)) = x + 3^5*x^2/2 + 4^5*x^3/3 + 7^5*x^4/4 + 11^5*x^5/5 + 18^5*x^6/6 + 29^5*x^7/7 + 47^5*x^8/8 + ... + Lucas(n)^5*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - x - x^2)^10*(1 + 4*x - x^2)^5*(1 - 11*x - x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
  • PARI
    /* Subroutine used in PARI programs below: */
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^5*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n,m=2)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}

Formula

G.f.: 1/( (1-x-x^2)^10 * (1+4*x-x^2)^5 * (1-11*x-x^2) ).
G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A203855(n) where A203855(n) = (1/n)*Sum_{d|n} moebius(n/d)*Lucas(d)^4.

A203807 G.f.: exp( Sum_{n>=1} A000204(n)^7 * x^n/n ) where A000204 is the Lucas numbers.

Original entry on oeis.org

1, 1, 1094, 6555, 809765, 10676072, 570282082, 11680775298, 427757608420, 10880625876510, 341910837405634, 9500984180929624, 282684350289144641, 8100555748749977985, 236841648715969283630, 6851665210550903756723, 199305150210062939465293
Offset: 0

Views

Author

Paul D. Hanna, Jan 06 2012

Keywords

Comments

More generally, exp(Sum_{k>=1} A000204(k)^(2*n+1) * x^k/k) = Product_{k=0..n} 1/(1 - (-1)^(n-k)*A000204(2*k+1)*x - x^2)^binomial(2*n+1,n-k).

Examples

			G.f.: A(x) = 1 + x + 1094*x^2 + 6555*x^3 + 809765*x^4 + 10676072*x^5 + ...
where
log(A(x)) = x + 3^7*x^2/2 + 4^7*x^3/3 + 7^7*x^4/4 + 11^7*x^5/5 + 18^7*x^6/6 + 29^7*x^7/7 + 47^7*x^8/8 + ... + Lucas(n)^7*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1 + x - x^2)^35*(1 - 4*x - x^2)^21*(1 + 11*x - x^2)^7*(1 - 29*x - x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
  • PARI
    /* Subroutine used in PARI programs below: */
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^7*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n,m=3)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}

Formula

G.f.: 1/( (1+x-x^2)^35 * (1-4*x-x^2)^21 * (1+11*x-x^2)^7 * (1-29*x-x^2) ).
G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A203857(n) where A203857(n) = (1/n)*Sum_{d|n} moebius(n/d)*Lucas(d)^6.

A203808 G.f.: exp( Sum_{n>=1} A000204(n)^8 * x^n/n ) where A000204 is the Lucas numbers.

Original entry on oeis.org

1, 1, 3281, 25126, 6845526, 121368902, 12805025677, 373879862237, 24707348223677, 948781359159752, 50702478932197928, 2210812262034197128, 108528095366637700218, 4974402150387759436378, 236926456045384849970778, 11047772769135934828000404
Offset: 0

Views

Author

Paul D. Hanna, Jan 06 2012

Keywords

Comments

More generally, exp(Sum_{k>=1} A000204(k)^(2*n) * x^k/k) = 1/(1 - (-1)^n*x)^binomial(2*n,n) * Product_{k=1..n} 1/(1 - (-1)^(n-k)*A000204(2*k)*x + x^2)^binomial(2*n,n-k).

Examples

			G.f.: A(x) = 1 + x + 3281*x^2 + 25126*x^3 + 6845526*x^4 + 121368902*x^5 + ...
where
log(A(x)) = x + 3^8*x^2/2 + 4^8*x^3/3 + 7^8*x^4/4 + 11^8*x^5/5 + 18^8*x^6/6 + 29^8*x^7/7 + 47^8*x^8/8 + ... + Lucas(n)^8*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - x)^70*(1 + 3*x + x^2)^56*(1 - 7*x + x^2)^28*(1 + 18*x + x^2)^8*(1 - 47*x + x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
  • PARI
    /* Subroutine used in PARI programs below: */
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^8*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n,m=4)=polcoeff(1/(1 - (-1)^m*x+x*O(x^n))^binomial(2*m,m) * prod(k=1,m,1/(1 - (-1)^(m-k)*Lucas(2*k)*x + x^2+x*O(x^n))^binomial(2*m,m-k)),n)}

Formula

G.f.: 1/( (1-x)^70 * (1+3*x+x^2)^56 * (1-7*x+x^2)^28 * (1+18*x+x^2)^8 * (1-47*x+x^2) ).
G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A203858(n) where A203858(n) = (1/n)*Sum_{d|n} moebius(n/d)*Lucas(d)^7.

A203853 a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^2, where Lucas(n) = A000204(n).

Original entry on oeis.org

1, 4, 5, 10, 24, 50, 120, 270, 640, 1500, 3600, 8610, 20880, 50700, 124024, 304290, 750120, 1854400, 4600200, 11440548, 28527320, 71289000, 178526880, 447910470, 1125750120, 2833885800, 7144449920, 18036373140, 45591631800, 115381697740, 292329067800, 741410800830
Offset: 1

Views

Author

Paul D. Hanna, Jan 07 2012

Keywords

Comments

Apparently the same as A032170, if n > 2. - R. J. Mathar, Jan 11 2012

Examples

			G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^4 * (1-4*x^3-x^6)^5 * (1-7*x^4+x^8)^10 * (1-11*x^5-x^10)^24 * (1-18*x^6+x^12)^50 * (1-29*x^7-x^14)^120 * ... * (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) * ...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^3 * x^n/n ) = g.f. of A203803:
F(x) = 1 + x + 14*x^2 + 35*x^3 + 205*x^4 + 744*x^5 + 3414*x^6 + ...
where
log(F(x)) = x + 3^3*x^2/2 + 4^3*x^3/3 + 7^3*x^4/4 + 11^3*x^5/5 + 18^3*x^6/6 + 29^3*x^7/7 + 47^3*x^8/8 + ... + Lucas(n)^3*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= 1/n DivisorSum[n, MoebiusMu[n/#] LucasL[#]^2 &]; Array[a, 30] (* G. C. Greubel, Dec 25 2017 *)
  • PARI
    {a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^2)/n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=local(F=exp(sum(m=1, n, Lucas(m)^3*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}

Formula

G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) = exp(Sum_{n>=1} Lucas(n)^3 * x^n/n), which is the g.f. of A203803.
a(n) ~ phi^(2*n) / n, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 02 2017

A304333 Number of positive integers k such that n - L(k) is a positive squarefree number, where L(k) denotes the k-th Lucas number A000204(k).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 2, 3, 3, 3, 2, 3, 3, 5, 2, 3, 4, 5, 2, 4, 4, 4, 3, 5, 4, 4, 2, 3, 3, 5, 3, 5, 5, 5, 4, 4, 5, 4, 4, 6, 5, 6, 3, 6, 4, 5, 3, 6, 5, 6, 3, 5, 4, 5, 3, 3, 4, 6, 4, 6, 4, 7, 3, 6, 4, 6, 2, 6, 6, 6, 4, 5, 6, 4, 4, 6, 7, 6, 3, 7, 6, 6, 4, 6, 5, 7, 5, 6, 7, 8
Offset: 1

Views

Author

Zhi-Wei Sun, May 11 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
This has been verified for n up to 5*10^9.
See also A304331 for a similar conjecture involving Fibonacci numbers.
For all n, a(n) <= A130241(n). - Antti Karttunen, May 13 2018

Examples

			a(2) = 1 with 2 - L(1) = 1 squarefree.
a(3) = 1 with 3 - L(1) = 2 squarefree.
a(67) = 2 with 67 - L(1) = 2*3*11 and 67 - L(7) = 2*19 both squarefree.
		

Crossrefs

Programs

  • Maple
    a := proc(n) local count, lucas, newcas;
    count := 0; lucas := 1; newcas := 2;
    while lucas < n do
        if numtheory:-issqrfree(n - lucas) then count := count + 1 fi;
        lucas, newcas := lucas + newcas, lucas;
    od;
    count end:
    seq(a(n), n=1..90); # Peter Luschny, May 15 2018
  • Mathematica
    f[n_]:=f[n]=LucasL[n];
    tab={};Do[r=0;k=1;Label[bb];If[f[k]>=n,Goto[aa]];If[SquareFreeQ[n-f[k]],r=r+1];k=k+1;Goto[bb];Label[aa];tab=Append[tab,r],{n,1,90}];Print[tab]
  • PARI
    A304333(n) = { my(u1=1,u2=3,old_u1,c=0); if(n<=2,n-1,while(u1Antti Karttunen, May 13 2018

A067592 Number of partitions of n into Lucas parts (A000204(k) for k >= 1).

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 4, 6, 7, 8, 10, 13, 15, 17, 21, 25, 28, 32, 39, 44, 49, 57, 66, 73, 82, 94, 105, 116, 130, 147, 162, 178, 199, 221, 241, 265, 295, 322, 350, 385, 423, 458, 498, 545, 592, 639, 693, 755, 814, 876, 949, 1026, 1100, 1183, 1278, 1371, 1467, 1576, 1694, 1809, 1933, 2072, 2215, 2359, 2517, 2691
Offset: 0

Views

Author

Naohiro Nomoto, Jan 31 2002

Keywords

Examples

			a(7) counts these partitions: 7, 43, 4111, 331, 31111, 1111111. - _Clark Kimberling_, Mar 08 2014
		

Programs

  • Mathematica
    p[n_] := IntegerPartitions[n, All, LucasL@Range@15]; Table[p[n], {n, 0, 12}] (* shows partitions *)
    a[n_] := Length@p@n; a /@ Range[0,80] (* counts partitions, A067592 *)
    (* Clark Kimberling, Mar 08 2014 *)
    Table[SeriesCoefficient[gf = 1; k = 1; While[LucasL[k] <= n, gf = gf*(1 - x^LucasL[k]); k++]; gf = 1/gf, {x, 0, n}], {n, 0, 100}] (* Vaclav Kotesovec, Mar 26 2014, after Joerg Arndt *)
  • PARI
    N=66; q='q+O('q^N);
    L(n) = fibonacci(n+2) - fibonacci(n-2);
    gf = 1; k=1; while( L(k) <= N, gf*=(1-q^L(k)); k+=1 ); gf = 1/gf;
    Vec( gf ) /* Joerg Arndt, Mar 26 2014 */

Formula

G.f.: 1/Product_{n>=1} (1 - q^A000204(n)). - Joerg Arndt, Mar 26 2014

A203809 G.f.: exp( Sum_{n>=1} A000204(n)^9 * x^n/n ) where A000204 is the Lucas numbers.

Original entry on oeis.org

1, 1, 9842, 97223, 58608265, 1390114224, 296390076414, 12122505505998, 1486321234837932, 84428445979241330, 7833461016478812734, 528228569507280147664, 43275470600883540869733, 3148637876123977595284117, 245565185017744596492591850
Offset: 0

Views

Author

Paul D. Hanna, Jan 06 2012

Keywords

Comments

More generally, exp(Sum_{k>=1} A000204(k)^(2*n+1) * x^k/k) = Product_{k=0..n} 1/(1 - (-1)^(n-k)*A000204(2*k+1)*x - x^2)^binomial(2*n+1,n-k).

Examples

			G.f.: A(x) = 1 + x + 9842*x^2 + 97223*x^3 + 58608265*x^4 + 1390114224*x^5 + ...
where
log(A(x)) = x + 3^9*x^2/2 + 4^9*x^3/3 + 7^9*x^4/4 + 11^9*x^5/5 + 18^9*x^6/6 + 29^9*x^7/7 + 47^9*x^8/8 + ... + Lucas(n)^9*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - x - x^2)^126*(1 + 4*x - x^2)^84*(1 - 11*x - x^2)^36*(1 + 29*x - x^2)^9*(1 - 76*x - x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 25 2017 *)
  • PARI
    /* Subroutine used in PARI programs below: */
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^9*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n,m=4)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}

Formula

G.f.: 1/( (1-x-x^2)^126 * (1+4*x-x^2)^84 * (1-11*x-x^2)^36 * (1+29*x-x^2)^9 * (1-76*x-x^2) ).
G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A203859(n) where A203859(n) = (1/n)*Sum_{d|n} moebius(n/d)*Lucas(d)^8.

A203850 G.f.: Product_{n>=1} (1 - Lucas(n)*x^n + (-x^2)^n) / (1 + Lucas(n)*x^n + (-x^2)^n) where Lucas(n) = A000204(n).

Original entry on oeis.org

1, -2, -4, 0, 14, 16, 0, 0, 4, -152, -188, 0, 0, -44, 0, 0, 4414, 5456, -4, 0, 1288, 0, 0, 0, 0, -335406, -414728, 0, 0, -97904, 0, 0, 4, 0, -8828, 0, 66770564, 82532956, 0, 0, 19483388, -304, 0, 0, 0, 1756816, 0, 0, 0, -34787592002, -42999828492, 0, 60508, -10150882544, 0, 0, 0, 0, -915304508, 0, 0, 796
Offset: 0

Views

Author

Paul D. Hanna, Jan 07 2012

Keywords

Comments

Compare to: Product_{n>=1} (1-q^n)/(1+q^n) = 1 + 2*Sum_{n>=1} (-1)^n*q^(n^2), the Jacobi theta_4 function, which has the g.f: exp( Sum_{n>=1} -(sigma(2*n)-sigma(n)) * q^n/n ).

Examples

			G.f.: A(x) = 1 - 2*x - 4*x^2 + 14*x^4 + 16*x^5 + 4*x^8 - 152*x^9 - 188*x^10 +...
-log(A(x)) = 2*x + 4*3*x^2/2 + 8*4*x^3/3 + 8*7*x^4/4 + 12*11*x^5/5 + 16*18*x^6/6 +...+ (sigma(2*n)-sigma(n))*Lucas(n)*x^n/n +...
Compare to the logarithm of Jacobi theta4 H(x) = 1 + 2*Sum_{n>=1} (-1)^n*x^(n^2):
-log(H(x)) = 2*x + 4*x^2/2 + 8*x^3/3 + 8*x^4/4 + 12*x^5/5 + 16*x^6/6 + 16*x^7/7 +...+ (sigma(2*n)-sigma(n))*x^n/n +...
The g.f. equals the product:
A(x) = (1-x-x^2)/(1+x-x^2) * (1-3*x^2+x^4)/(1+3*x^2+x^4) * (1-4*x^3-x^6)/(1+4*x^3-x^6) * (1-7*x^4+x^8)/(1+7*x^4+x^8) * (1-11*x^5-x^10)/(1+11*x^5-x^10) *...* (1 - Lucas(n)*x^n + (-x^2)^n)/(1 + Lucas(n)*x^n + (-x^2)^n) *...
Positions of zeros form A022544:
[3,6,7,11,12,14,15,19,21,22,23,24,27,28,30,31,33,35,38,39,42,43,44,...]
which are numbers that are not the sum of 2 squares.
		

Crossrefs

Programs

  • PARI
    /* Subroutine used in PARI programs below: */
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    
  • PARI
    {a(n)=polcoeff(prod(m=1, n, 1 - Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))/prod(m=1, n, 1 + Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(prod(m=1, n\2+1, (1 - Lucas(2*m-1)*x^(2*m-1) - x^(4*m-2))^2*(1 - Lucas(2*m)*x^(2*m) + x^(4*m) +x*O(x^n))), n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n,-(sigma(2*k)-sigma(k))*Lucas(k)*x^k/k)+x*O(x^n)), n)}

Formula

a(n) = 0 iff n is not the sum of 2 squares (A022544).
G.f.: Product_{n>=1} (1 - Lucas(2*n-1)*x^(2*n-1) - x^(4*n-2))^2 * (1 - Lucas(2*n)*x^(2*n) + x^(4*n)).
G.f.: exp( Sum_{n>=1} -(sigma(2*n)-sigma(n)) * Lucas(n) * x^n/n ) where Lucas(n) = A000204(n).
Previous Showing 11-20 of 335 results. Next