cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A334316 E.g.f. A(x) satisfies: A(x) = x * exp(A(x)) * (1 - A(x)).

Original entry on oeis.org

1, 0, -3, -8, 45, 576, 385, -54144, -499527, 4787200, 160740261, 558627840, -45943496027, -854266871808, 8403892043625, 590895130771456, 4982009666876145, -320936968832679936, -10133752613818727987, 75595253378088960000, 11587542472638176520861
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2020

Keywords

Comments

Exponential reversion of A000240 (rencontres numbers).

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[InverseSeries[Series[x Exp[-x]/(1 - x), {x, 0, nmax}], x], x] Range[0, nmax]! // Rest
    Table[(n - 1)! Sum[(-1)^k Binomial[n, k] n^(n - k - 1)/(n - k - 1)!, {k, 0, n - 1}], {n, 1, 21}]
    Table[HypergeometricU[1 - n, 2, n], {n, 1, 21}]

Formula

a(n) = (n-1)! * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * n^(n-k-1) / (n-k-1)!.

A373966 Triangle read by rows: T(n,k) = (-1)^(n+1) * A000166(n) + (-1)^(k) * A000166(k) for n >= 2 and 1 <= k <= n-1.

Original entry on oeis.org

-1, 2, 3, -9, -8, -11, 44, 45, 42, 53, -265, -264, -267, -256, -309, 1854, 1855, 1852, 1863, 1810, 2119, -14833, -14832, -14835, -14824, -14877, -14568, -16687, 133496, 133497, 133494, 133505, 133452, 133761, 131642, 148329, -1334961, -1334960, -1334963, -1334952, -1335005, -1334696, -1336815, -1320128, -1468457
Offset: 2

Views

Author

Mohammed Yaseen, Jun 24 2024

Keywords

Examples

			Triangle begins:
    -1;
     2,    3;
    -9,   -8,  -11;
    44,   45,   42,   53;
  -265, -264, -267, -256, -309;
  1854, 1855, 1852, 1863, 1810, 2119;
  ...
		

Crossrefs

Unsigned columns: A000166, A000240.
Unsigned diagonals: A000255, A018934.

Programs

  • Mathematica
    T[n_,k_]:= (-1)^(n+1)*Subfactorial[n] + (-1)^k*Subfactorial[k]; Table[T[n,k],{n,2,10},{k,n-1}]// Flatten (* Stefano Spezia, Jun 24 2024 *)

Formula

Integral_{1..e} (log(x)^k - log(x)^n) dx = T(n,k)*e + A373967(n,k).

A038033 a(n) = A000166(n-1)*n*(n-1).

Original entry on oeis.org

6, 24, 180, 1320, 11130, 103824, 1067976, 12014640, 146845710, 1938363240, 27489515196, 416924313624, 6734931220290, 115455963776160, 2093601476474640, 40040128237577184, 805513168073611926
Offset: 3

Views

Author

Christian G. Bower from a sequence by Erich Friedman

Keywords

Crossrefs

Equals 6 * A000313(n+1).

Programs

  • Maple
    a:=n->sum(n!*sum((-1)^k/k!, j=0..n), k=0..n): seq(a(n)*n, n=2..17); # Zerinvary Lajos, Dec 18 2007

Formula

E.g.f.: x^3/((1-x)^2*e^x)

A144090 Triangle read by rows: T(n,k) is the number of partial bijections (or subpermutations) of an n-element set of height k (height(alpha) = |Im(alpha)|) and with exactly 1 fixed point.

Original entry on oeis.org

1, 2, 0, 3, 6, 3, 4, 24, 36, 8, 5, 60, 210, 220, 45, 6, 120, 780, 1920, 1590, 264, 7, 210, 2205, 9940, 19005, 12978, 1855, 8, 336, 5208, 37520, 130200, 203952, 118664, 14832, 9, 504, 10836, 114408, 630630, 1783656, 2369556, 1201464, 133497
Offset: 1

Views

Author

Abdullahi Umar, Sep 11 2008

Keywords

Examples

			T(3,2) = 6 because there are exactly 6 partial bijections (on a 3-element set) with exactly 1 fixed point and of height 2, namely: (1,2)->(1,3), (1,2)->(3,2), (1,3)->(1,2), (1,3)->(2,3), (2,3)->(2,1), (2,3)->(1,3)- the mappings are coordinate-wise.
First six rows:
1
2      0
3      6      3
4     24     36       8
5     60    210     220      45
6    120    780    1920    1590    264
		

Crossrefs

Rows sums are A144086.
Main diagonal gives A000240.

Programs

  • Mathematica
    Table[(n!/(n - k)!) Sum[ ((-1)^m/m!) Binomial[n - 1 - m, k - 1 - m], {m, 0, k - 1}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Apr 27 2016 *)
  • PARI
    T(n,k) = (n!/(n-k)!)*sum(m=0,k-1,((-1)^m/m!)*binomial(n-1-m,k-1-m));
    for (n=1, 10, for (k=1, n, print1(T(n,k), ", "))) \\ Michel Marcus, Apr 27 2016

Formula

T(n,k) = (n!/(n-k)!)*Sum_{m=0..k-1} ((-1)^m/m!)*C(n-1-m,k-1-m).

A271706 Triangle read by rows: T(n, k) = Sum_{j=0..n} C(-j-1, -n-1)*L(j, k), L the unsigned Lah numbers A271703, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, -1, 1, 1, 0, 1, -1, 3, 3, 1, 1, 8, 18, 8, 1, -1, 45, 110, 70, 15, 1, 1, 264, 795, 640, 195, 24, 1, -1, 1855, 6489, 6335, 2485, 441, 35, 1, 1, 14832, 59332, 67984, 32550, 7504, 868, 48, 1, -1, 133497, 600732, 789852, 445914, 126126, 19068, 1548, 63, 1
Offset: 0

Views

Author

Peter Luschny, Apr 20 2016

Keywords

Examples

			Triangle starts:
  [ 1]
  [-1,    1]
  [ 1,    0,    1]
  [-1,    3,    3,    1]
  [ 1,    8,   18,    8,    1]
  [-1,   45,  110,   70,   15,   1]
  [ 1,  264,  795,  640,  195,  24,  1]
  [-1, 1855, 6489, 6335, 2485, 441, 35, 1]
		

Crossrefs

A052845 (row sums), A000240 (col. 1), A000274 (col. 2), A067998 (diag n,n-1).

Programs

  • Maple
    L := (n, k) -> `if`(k<0 or k>n, 0, (n-k)!*binomial(n, n-k)*binomial(n-1, n-k)):
    T := (n, k) -> add(L(j, k)*binomial(-j-1,-n-1), j=0..n):
    seq(seq(T(n, k), k=0..n), n=0..9);
    # Or:
    T := (n, k) -> (-1)^(n-k)*binomial(n, k)*hypergeom([k-n, k], [], 1):
    for n from 0 to 8 do seq(simplify(T(n, k)), k=0..n) od; # Peter Luschny, Jun 25 2025

Formula

T(n, k) = (-1)^(k-n)*binomial(n, k)*hypergeom([k-n, k], [], 1). (After a formula of Natalia L. Skirrow in A271705.) - Peter Luschny, Jun 25 2025

A348311 a(n) = n! * Sum_{k=1..n} (-1)^k * (k-2) / (k-1)!.

Original entry on oeis.org

0, 1, 2, 3, 20, 85, 534, 3703, 29672, 266985, 2669930, 29369131, 352429692, 4581585853, 64142202110, 962133031455, 15394128503504, 261700184559313, 4710603322067922, 89501463119290195, 1790029262385804260, 37590614510101889061, 826993519222241559782
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[(-1)^k (k - 2)/(k - 1)!, {k, 1, n}], {n, 0, 22}]
    nmax = 22; CoefficientList[Series[x (1 + x) Exp[-x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = n!*sum(k=1, n, (-1)^k * (k-2) / (k-1)!); \\ Michel Marcus, Oct 20 2021

Formula

E.g.f.: x * (1 + x) * exp(-x) / (1 - x).
a(0) = 0; a(n) = n * (a(n-1) + (-1)^n * (n-2)).
a(n) = n * (2 * A000166(n-1) + (-1)^n).
Previous Showing 31-36 of 36 results.