cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A001042 a(n) = a(n-1)^2 - a(n-2)^2.

Original entry on oeis.org

1, 2, 3, 5, 16, 231, 53105, 2820087664, 7952894429824835871, 63248529811938901240357985099443351745, 4000376523371723941902615329287219027543200136435757892789536976747706216384
Offset: 0

Views

Author

Keywords

Comments

The next term has 152 digits. - Franklin T. Adams-Watters, Jun 11 2009

References

  • Archimedeans Problems Drive, Eureka, 27 (1964), 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A064236 (numbers of digits).

Programs

  • Haskell
    a001042 n = a001042_list !! n
    a001042_list = 1 : 2 : zipWith (-) (tail xs) xs
                   where xs = map (^ 2) a001042_list
    -- Reinhard Zumkeller, Dec 16 2013
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==a[n-1]^2-a[n-2]^2},a,{n,0,12}] (* Harvey P. Dale, Jan 11 2013 *)

Formula

a(n) ~ c^(2^n), where c = 1.1853051643868354640833201434870139866230288004895868726506278977814490371... . - Vaclav Kotesovec, Dec 17 2014

Extensions

More terms from James Sellers, Sep 19 2000.

A112980 a(0) = 0, a(1) = 1; for n>=2: a(n) = a(n-1)^5 + a(n-2)^5.

Original entry on oeis.org

0, 1, 1, 2, 33, 39135425, 91801604643057285538237803582627026018
Offset: 0

Views

Author

Jonathan Vos Post, Jan 02 2006

Keywords

Examples

			a(3) = 1^5 + 1^5 = 2.
a(4) = 1^5 + 2^5 = 33.
a(5) = 2^5 + 33^5 = 39135425.
a(6) = 33^5 + 39135425^5 = 91801604643057285538237803582627026018.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1]==a[2]==1,a[n]==a[n-1]^5+a[n-2]^5},a,{n,7}] (* Harvey P. Dale, May 01 2012 *)

Extensions

a(0)=0 prepended by Alois P. Heinz, Sep 15 2023

A112982 a(1) = a(2) = a(3) = a(4) = 1; for n>4: a(n) = a(n-1)^4 + a(n-2)^4 + a(n-3)^4 + a(n-4)^4.

Original entry on oeis.org

1, 1, 1, 1, 4, 259, 4499860819, 410011770879070587605284428972195139939
Offset: 1

Views

Author

Jonathan Vos Post, Jan 03 2006

Keywords

Comments

A quartic tetranacci sequence.
This is a quartic (biquadratic) analog of a tetranacci sequence A000288, similarly to A000283 being the quadratic analog of the Fibonacci sequence A000045. a(5), a(6) a(7) and a(8) are semiprime. a(9) has 155 digits.

Examples

			a(5) = 1^4 + 1^4 + 1^4 + 1^4 = 4.
a(6) = 1^4 + 1^4 + 1^4 + 4^4 = 259.
a(7) = 1^4 + 1^4 + 4^4 + 259^4 = 4499860819.
a(8) = 1^4 + 4^4 + 259^4 + 4499860819^4.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1,a[n]==a[n-1]^4+ a[n-2]^4+ a[n-3]^4+ a[n-4]^4},a,{n,10}] (* Harvey P. Dale, May 19 2019 *)

A113494 a(0) = 2, a(1) = 3; for n>1, a(n) = a(n-2)^2 + a(n-1)^2.

Original entry on oeis.org

2, 3, 13, 178, 31853, 1014645293, 1029505071621669458, 1059880692494738761409621021617069613, 1123347082323126985848870489739619316533660939418089557571160604297983533
Offset: 0

Views

Author

Michael Hogan (Michael(AT)michaelhogan.com), Jan 10 2006

Keywords

References

  • Harper's Magazine, Feb 2006, Page 14.

Crossrefs

Cf. A000283.

Programs

  • Mathematica
    a[1] = 2; a[2] = 3; a[n_] := a[n - 2]^2 + a[n - 1]^2; Array[a, 9] (* Robert G. Wilson v *)

Extensions

Corrected and extended by Robert G. Wilson v, Jan 11 2006

A113848 a(1) = a(2) = 1, a(n+2) = 2*a(n) + a(n+1)^2.

Original entry on oeis.org

1, 1, 3, 11, 127, 16151, 260855055, 68045359719085327, 4630170979299719971778494028407039, 21438483297549327871400796194793048411084076762817293736211302918175
Offset: 1

Views

Author

Jonathan Vos Post, Jan 24 2006

Keywords

Comments

In this sequence the primes begin a(3) = 3, a(4) = 11, a(5) = 127, a(9) = 4630170979299719971778494028407039.

Examples

			a(1) = 1 by definition.
a(2) = 1 by definition.
a(3) = 2*1 + 1^2 = 3.
a(4) = 2*1 + 3^2 = 11.
a(5) = 2*3 + 11^2 = 127.
a(6) = 2*11 + 127^2 = 16151.
		

Crossrefs

Programs

Formula

a(1) = a(2) = 1, for n>2: a(n) = 2*a(n-2) + a(n-1)^2. a(1) = a(2) = 1, for n>0: a(n+2) = 2*a(n) + a(n+1)^2.
a(n) ~ c^(2^n), where c = 1.163464453662702696843453679269882816346479873363677551158525103156732040997... . - Vaclav Kotesovec, Dec 18 2014

A114955 A 2/3-power Fibonacci sequence.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

Jonathan Vos Post, Feb 21 2006

Keywords

Comments

a(n) is also the minimum number of distinct palindromes (not counting the empty string) occurring as substrings of an n-bit binary string. For example, the string 11001 contains the five distinct palindromes 0, 00, 1, 11, and 1001. In fact, every 5-bit binary string contains five distinct palindromes, so a(5) = 5. - Austin Shapiro, Feb 15 2023

Examples

			a(2) = ceiling(a(0)^(2/3) + a(1)^(2/3)) = ceiling(1^(2/3) + 1^(2/3)) = 2.
a(3) = ceiling(a(1)^(2/3) + a(2)^(2/3)) = ceiling(1^(2/3) + 2^(2/3)) = ceiling(2.58740105) = 3.
a(4) = ceiling(2^(2/3) + 3^(2/3)) = ceiling(3.66748488) = 4.
a(5) = ceiling(3^(2/3) + 4^(2/3)) = ceiling(4.59992592) = 5.
a(6) = ceiling(4^(2/3) + 5^(2/3)) = ceiling(5.44385984) = 6.
a(7) = ceiling(5^(2/3) + 6^(2/3)) = ceiling(6.22594499) = 7.
a(8) = ceiling(6^(2/3) + 7^(2/3)) = ceiling(6.96123296) = 7.
		

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,Ceiling[b^(2/3)+a^(2/3)]}; Transpose[NestList[nxt,{1,1},80]][[1]] (* Harvey P. Dale, Jan 03 2013 *)
  • PARI
    {a(n)=if(n<1, n==0, if(n>8, 8, n-(n>7)))} /* Michael Somos, Aug 31 2006 */

Formula

a(0) = a(1) = 1, for n>1 a(n) = ceiling(a(n-1)^(2/3) + a(n-2)^(2/3)).
a(n) = 8 for all n>8.
Euler transform of length 8 sequence [ 1, 1, 1, 0, 0, -1, 0, -1]. - Michael Somos, Aug 31 2006
G.f.: (1-x^6)(1-x^8)/((1-x)(1-x^2)(1-x^3)). - Michael Somos, Aug 31 2006

A228898 Nodes of tree generated as follows: (1,2) is an edge, and if (x,y) is an edge, then (y,x+y) and (y,x^2 + y^2) are edges.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 12, 13, 16, 19, 21, 29, 31, 34, 39, 45, 50, 55, 63, 73, 74, 81, 89, 97, 112, 119, 131, 144, 155, 160, 178, 185, 186, 191, 193, 205, 212, 233, 236, 246, 257, 283, 297, 312, 343, 369, 377, 391, 398, 417, 425, 441, 469, 479, 482, 505, 524, 555
Offset: 1

Views

Author

Clark Kimberling, Sep 08 2013

Keywords

Comments

The tree has infinitely many branches which are essentially linear recurrence sequences (and infinitely many which are not). The extreme branches are (1,2)->(2,3)->(3,5)->(5,8)->... and (1,2)->(2,5)->(5,29)->(29,866)->... These branches contribute to A228898, as subsequences, the Fibonacci numbers, A000045, and A000283.

Examples

			Taking the first generation of edges to be G(1) = {(1,2)}, the edge (1,2) grows G(2) = {(2,3), (2,5)}, which grows G(3) = {(3,5), (3,13), (5,7), (5,29)}, ... Expelling duplicate nodes and sorting leave (1, 2, 3, 5, 7, 8, 12, 13, 16, 19,...).
		

Crossrefs

Programs

  • Mathematica
    f[x_, y_] := {{y, x + y}, {y, x^2 + y^2}}; x = 1; y = 2; t = {{x, y}};
    u = Table[t = Flatten[Map[Apply[f, #] &, t], 1], {18}]; v = Flatten[u];
    w = Flatten[Prepend[Table[v[[2 k]], {k, 1, Length[v]/2}], {x, y}]];
    Sort[Union[w]]

A112981 a(1) = a(2) = a(3) = 1; for n>3: a(n) = a(n-1)^3 + a(n-2)^3 + a(n-3)^3.

Original entry on oeis.org

1, 1, 1, 3, 29, 24417, 14557168544129, 3084826414596074361107793217201624802791
Offset: 1

Views

Author

Jonathan Vos Post, Jan 02 2006

Keywords

Comments

A cubic tribonacci sequence.
This is a cubic analog of a tribonacci sequence A000213, similarly to A000283 being the quadratic analog of the Fibonacci sequence A000045. a(4) and a(5) are primes; a(7) is semiprime; a(6) and a(8) have 3 prime factors. a(9) has 119 digits.

Examples

			a(6) = 1^3 + 3^3 + 29^3 = 24417.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==1,a[n]==a[n-1]^3+a[n-2]^3+a[n-3]^3},a,{n,10}] (* Harvey P. Dale, Jan 25 2018 *)

A113592 Array of quadratic pseudofibonacci sequences, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 11, 1, 4, 11, 40, 127, 1, 5, 18, 127, 1612, 16151, 1, 6, 27, 332, 16151, 2598264, 260855055, 1, 7, 38, 739, 110260
Offset: 1

Views

Author

Jonathan Vos Post, Jan 26 2006

Keywords

Comments

Row 1 is A113848. Column 1 is A000012 (the simplest sequence of positive numbers: the all 1's sequence). Column 2 is A000027 (the natural numbers) = n. Column 3 is A010000 = A059100(n+1) = n^2 + 2. Column 4 is 2*n + (n^2 + 2)^2 = n^4 + 4*n^2 + 2*n + 4. Column 5 is 2*(n^2 + 2) + (n^4 + 4*n^2 + 2*n + 4)^2 = n^8 + 8*n^6 + 4*n^5 + 24*n^4 + 16*n^3 + 38*n^2 + 16*n + 20.

Examples

			Table (upper left corner):
1...1...3...11...127....16151...260855055...
1...2...6...40...1612...2598624.675284696600...
1...3...11..127..16151..260855055...
1...4...18..332..110260.12157268264...
1...5...27..739..546175...
1...6...38..1456.2120012...
1...7...51..2615.6838327...
1...8...66..4372.19114516...
1...9...83..6907.47706815
1..10..102..10424.108659980...
		

Crossrefs

Formula

Antidiagonals of table: T(i, j) = j-th iteration of a(i, 0) = 1, a(i, 1) = i and for j>1: a(i, j) = 2*a(i, j-2) + a(i, j-1)^2.

A114950 a(n) = a(n-1)^4 + a(n-2)^2, with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 2, 17, 83525, 48670514501156640914, 5611303368570568119463158581109807779153712597124269146443734128560476495542441
Offset: 0

Views

Author

Jonathan Vos Post, Feb 21 2006

Keywords

Comments

a(7) has 315 digits.

Examples

			a(2) = a(1)^4 + a(0)^2 = 1^4 + 1^2 = 2.
a(3) = a(2)^4 + a(1)^2 = 2^4 + 1^2 = 17.
a(4) = a(3)^4 + a(2)^2 = 17^4 + 2^2 = 83525.
a(5) = a(4)^4 + a(3)^2 = 83525^4 + 17^2 = 48670514501156640914.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] ==1, a[1] == 1, a[n] == a[n-1]^4 + a[n-2]^2}, a, {n, 0, 8}] (* Vaclav Kotesovec, Dec 18 2014 *)

Formula

a(n) ~ c^(4^n), where c = 1.045263645117629170027922399491730015846213509999461317320720034161754262379... . - Vaclav Kotesovec, Dec 18 2014

Extensions

Formula corrected by Vaclav Kotesovec, Dec 18 2014
Missing a(3) added from Vaclav Kotesovec, Dec 18 2014
Previous Showing 11-20 of 26 results. Next