cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 42 results. Next

A174323 Numbers n such that omega(Fibonacci(n)) is a square.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 11, 13, 17, 20, 23, 24, 27, 28, 29, 32, 43, 47, 52, 55, 74, 77, 80, 83, 84, 85, 87, 88, 91, 93, 96, 97, 100, 108, 115, 123, 131, 132, 137, 138, 143, 146, 149, 156, 157, 161, 163, 178, 184, 187, 189, 196, 197, 209, 211, 214, 215, 221, 222, 223, 232
Offset: 1

Views

Author

Michel Lagneau, Mar 15 2010

Keywords

Comments

Numbers n such that omega(A000045(n)) is a square, where omega(p) is the number of distinct prime factors of p (A001221). Remark: for the larger Fibonacci numbers F(n) (n > 300), the Maple program (below) is very slow. So we use a two-step process: factoring F(n) with the elliptic curve method, and then calculate the distinct prime factors.

Examples

			omega(Fibonacci(1)) = omega(Fibonacci(2)) = omega(1) = 0,
omega(Fibonacci(3)) = omega(2) = 1,
omega(Fibonacci(20)) = omega(6765) = 4,
omega(Fibonacci(80)) = omega(23416728348467685) = 9.
		

References

  • Majorie Bicknell and Verner E Hoggatt, Fibonacci's Problem Book, Fibonacci Association, San Jose, Calif., 1974.
  • Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972, pages 1-8.

Crossrefs

Cf. A038575 (number of prime factors of n-th Fibonacci number, with multiplicity).
Cf. A022307 (number of distinct prime factors of n-th Fibonacci number), A086597 (number of primitive prime factors).

Programs

  • Magma
    [k:k in [1..240]| IsSquare(#PrimeDivisors(Fibonacci(k)))]; // Marius A. Burtea, Oct 15 2019
  • Maple
    with(numtheory):u0:=0:u1:=1:for p from 2 to 400 do :s:=u0+u1:u0:=u1:u1:=s: s1:=nops( ifactors(s)[2]): w1:=sqrt(s1):w2:=floor(w1):if w1=w2 then print (p): else fi:od:
    # alternative:
    P[1]:= {}: count:= 1: res:= 1:
    for i from 2 to 300 do
      pn:= map(t -> i/t, numtheory:-factorset(i));
      Cprimes:= `union`(seq(P[t],t=pn));
      f:= combinat:-fibonacci(i);
      for p in Cprimes do f:= f/p^padic:-ordp(f,p) od;
      P[i]:= Cprimes union numtheory:-factorset(f);
      if issqr(nops(P[i])) then
         count:= count+1;
         res:= res, i;
      fi;
    od:
    res; # Robert Israel, Oct 13 2016
  • Mathematica
    Select[Range[200], IntegerQ[Sqrt[PrimeNu[Fibonacci[#]]]] &] (* G. C. Greubel, May 16 2017 *)
  • PARI
    is(n)=issquare(omega(fibonacci(n))) \\ Charles R Greathouse IV, Oct 13 2016
    

A253706 Primes in the 8th-order Fibonacci numbers A079262.

Original entry on oeis.org

2, 509, 128257, 133294824621464999938178340471931877, 4596852049500861351052672455121859744010232939954169259264638023409631672658340253083284317818242062413
Offset: 1

Views

Author

Robert Price, Jan 09 2015

Keywords

Comments

a(6) is too large to display here. It has 395 digits and is the 1322nd term in A079262.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,0,0,0,1}; step=8; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
  • PARI
    lista(nn) = {gf = x^7/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8); for (n=0, nn, if (isprime(p=polcoeff(gf+O(x^(n+1)), n)), print1(p, ", ")););} \\ Michel Marcus, Jan 12 2015

A255529 Indices of primes in the 9th-order Fibonacci number sequence, A104144.

Original entry on oeis.org

10, 19, 878
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(4) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,0,0,0,0,1}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
  • PARI
    a104144(n) = polcoeff(x^8/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9) + O(x^(n+1)), n);
    lista(nn) = {for (n=1, nn, if (isprime(a104144(n)), print1(n, ", ")););} \\ Michel Marcus, Feb 27 2015

A255530 Indices of primes in the 9th-order Fibonacci number sequence, A251746.

Original entry on oeis.org

10, 19, 59, 79, 12487
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(6) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,0,0,0,1,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A255531 Indices of primes in the 9th-order Fibonacci number sequence, A251747.

Original entry on oeis.org

10, 16, 116, 236, 316, 1376, 5066, 103696, 120949
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(10) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,0,0,1,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
    Flatten[Position[LinearRecurrence[Table[1,{9}],{0,0,0,0,0,0,1,0,0},125000],?PrimeQ]]-1 (* _Harvey P. Dale, Nov 29 2017 *)

A255532 Indices of primes in the 9th-order Fibonacci number sequence, A251749.

Original entry on oeis.org

10, 14, 19, 29, 404, 1744, 8854, 27754
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(9) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,1,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A255533 Indices of primes in the 9th-order Fibonacci number sequence, A251750.

Original entry on oeis.org

10, 33, 43, 253, 1253, 2389
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(7) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,1,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A255534 Indices of primes in the 9th-order Fibonacci number sequence, A251751.

Original entry on oeis.org

10, 12, 232, 502
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(5) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,1,0,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
    Flatten[Position[LinearRecurrence[Table[1,{9}],{0,0,1,0,0,0,0,0,0},510], ?(PrimeQ[#]&)]]-1 (* _Harvey P. Dale, Feb 27 2016 *)

A255536 Indices of primes in the 9th-order Fibonacci number sequence, A251752.

Original entry on oeis.org

10, 11, 21, 29, 301, 57089
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(7) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,1,0,0,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A345669 Antidiagonal sums of array containing i-bonacci sequences nac(i,n), where nac(i,n) is the n-th i-bonacci number with nac(i,1..i) = 1 (see comments).

Original entry on oeis.org

1, 2, 3, 5, 7, 12, 18, 31, 51, 89, 153, 273, 483, 870, 1571, 2860, 5225, 9603, 17711, 32805, 60967, 113685, 212610, 398723, 749615, 1412585, 2667549, 5047345, 9567527, 18166272, 34546857, 65793343, 125471295, 239584610, 458028439, 876628109, 1679581899
Offset: 1

Views

Author

Christoph B. Kassir, Jun 21 2021

Keywords

Comments

Antidiagonal sum of below array:
1, 1, 1, 1, 1, 1, ... (1-bonacci numbers)
1, 1, 2, 3, 5, 8, ... (2-bonacci or Fibonacci numbers)
1, 1, 1, 3, 5, 9, ... (3-bonacci or tribonacci numbers)
1, 1, 1, 1, 4, 7, ... (4-bonacci or tetranacci numbers)
...

Crossrefs

Programs

  • Maple
    b:= proc(i, n) option remember; `if`(n=0, 0,
          `if`(n<=i, 1, add(b(i, n-j), j=1..i)))
        end:
    a:= n-> add(b(i+1, n-i), i=0..n):
    seq(a(n), n=1..37);  # Alois P. Heinz, Jun 21 2021
  • Mathematica
    b[i_, n_] := b[i, n] = If[n == 0, 0, If[n <= i, 1, Sum[b[i, n - j], {j, 1, i}]]];
    a[n_] := Sum[b[i + 1, n - i], {i, 0, n}];
    Table[a[n], {n, 1, 37}] (* Jean-François Alcover, Dec 27 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{i=1..n} of nac(i,n-i+1) = Sum_{i=1..n} of nac(n-i+1,i).
Previous Showing 31-40 of 42 results. Next