cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 162 results. Next

A367249 a(n) is the number of n-digit numbers whose difference between the largest and smallest digits is equal to 8.

Original entry on oeis.org

0, 3, 79, 1323, 18175, 223323, 2555119, 27828363, 292407775, 2990349243, 29943991759, 294872615403, 2864776362175, 27525734996763, 262061152909999, 2475899571994443, 23240879960425375, 216963121865909883, 2015960236625789839, 18656492902684557483, 172056837889322101375
Offset: 1

Views

Author

Stefano Spezia, Nov 11 2023

Keywords

Comments

a(n) is the number of n-digit numbers in A366965.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{24,-191,504},{0,3,79},21]

Formula

a(n) = 17*9^(n-1) - 31*8^(n-1) + 2*7^n.
a(n) = 24*a(n-1) - 191*a(n-2) + 504*a(n-3) for n > 3.
O.g.f.: x^2*(3 + 7*x)/((1 - 7*x)*(1 - 8*x)*(1 - 9*x)).
E.g.f.: (136*exp(9*x) - 279*exp(8*x) + 144*exp(7*x) - 1)/72.

A036293 a(n) = n*7^n.

Original entry on oeis.org

0, 7, 98, 1029, 9604, 84035, 705894, 5764801, 46118408, 363182463, 2824752490, 21750594173, 166095446412, 1259557135291, 9495123019886, 71213422649145, 531726889113616, 3954718737782519, 29311444762388082, 216579008522089717, 1595845325952240020, 11729463145748964147
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000420.

Programs

  • Magma
    [n*7^n: n in [0..20]] ; // Vincenzo Librandi, Aug 09 2011
  • Mathematica
    Table[n 7^n,{n,0,30}] (* or *) LinearRecurrence[{14,-49},{0,7},31] (* Harvey P. Dale, Aug 08 2011 *)

Formula

From Harvey P. Dale, Aug 08 2011: (Start)
a(n) = 14*a(n-1) - 49*a(n-2) with a(0)=0 and a(1)=7.
G.f.: (7*x)/(7*x-1)^2. (End)
From Amiram Eldar, Jul 20 2020: (Start)
Sum_{n>=1} 1/a(n) = log(7/6).
Sum_{n>=1} (-1)^(n+1)/a(n) = log(8/7). (End)
From Elmo R. Oliveira, Sep 09 2024: (Start)
E.g.f.: 7*x*exp(7*x).
a(n) = n*A000420(n). (End)

A083528 a(n) = 5^n mod 2*n.

Original entry on oeis.org

1, 1, 5, 1, 5, 1, 5, 1, 17, 5, 5, 1, 5, 25, 5, 1, 5, 1, 5, 25, 41, 25, 5, 1, 25, 25, 53, 9, 5, 25, 5, 1, 59, 25, 45, 1, 5, 25, 47, 65, 5, 1, 5, 9, 35, 25, 5, 1, 19, 25, 23, 1, 5, 1, 45, 81, 11, 25, 5, 25, 5, 25, 125, 1, 5, 49, 5, 81, 125, 65, 5, 1, 5, 25, 125, 17, 3, 25, 5, 65, 161, 25, 5, 1, 65
Offset: 1

Views

Author

Labos Elemer, Apr 30 2003

Keywords

Comments

a(n) = 1 iff n is in A067946. - Robert Israel, Dec 26 2014

Examples

			a(3) = 5 because 5^3 = 125 and 125 == 5 mod (2 * 3).
a(4) = 1 because 5^4 = 625 and 625 == 1 mod (2 * 4).
		

Crossrefs

Programs

  • Magma
    [Modexp(5, n, 2*n): n in [1..80]]; // Vincenzo Librandi, Oct 19 2018
  • Maple
    seq(5 &^n mod (2*n), n = 1 .. 100); # Robert Israel, Dec 26 2014
  • Mathematica
    Table[PowerMod[5, w, 2w], {w, 1, 100}]
  • PARI
    vector(100, n, lift(Mod(5, 2*n)^n)) \\ Michel Marcus, Dec 29 2014
    

A083529 a(n) = 5^n mod 3*n.

Original entry on oeis.org

2, 1, 8, 1, 5, 1, 5, 1, 26, 25, 5, 1, 5, 25, 35, 1, 5, 1, 5, 25, 62, 25, 5, 1, 50, 25, 80, 37, 5, 55, 5, 1, 26, 25, 80, 1, 5, 25, 8, 25, 5, 1, 5, 97, 80, 25, 5, 1, 68, 25, 125, 1, 5, 1, 155, 25, 125, 25, 5, 145, 5, 25, 188, 1, 5, 181, 5, 13, 125, 205, 5, 1, 5, 25, 125, 169, 80, 181, 5
Offset: 1

Views

Author

Labos Elemer, Apr 30 2003

Keywords

Comments

From Robert Israel, Dec 25 2014: (Start)
a(n) == (-1)^n mod 3.
a(n) = 1 if and only if n is even and in A067946.
For n > 3, a(n) = 5 if and only if n is odd and in A123091. (End)

Examples

			a(3) = 8 because 5^3 = 125 and 125 mod (3 * 3) = 8.
a(4) = 1 because 5^4 = 625 and 625 mod (3 * 4) = 1.
		

Crossrefs

Programs

A083530 a(n) = 7^n mod (2*n).

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 7, 1, 1, 9, 7, 1, 7, 21, 13, 1, 7, 1, 7, 1, 7, 5, 7, 1, 7, 49, 1, 49, 7, 49, 7, 1, 13, 49, 63, 1, 7, 49, 31, 1, 7, 49, 7, 25, 37, 49, 7, 1, 49, 49, 37, 9, 7, 1, 43, 49, 1, 49, 7, 1, 7, 49, 91, 1, 37, 37, 7, 89, 67, 49, 7, 1, 7, 49, 43, 121, 105, 25, 7, 1, 1, 49, 7, 49, 147, 49
Offset: 1

Views

Author

Labos Elemer, Apr 30 2003

Keywords

Examples

			For n = 5, a(5) = 7 because 7^5 = 16807 = 1680*10 + 7, that is 7^5 == 7 (mod 2*5).
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[7^w, 2*w], {w, 1, 100}]
  • PARI
    a(n)=lift(Mod(7,2*n)^n) \\ Charles R Greathouse IV, Oct 03 2016

A151785 a(n) = 7^(wt(n) - 1) where wt(n) is the binary weight of n (A000120).

Original entry on oeis.org

1, 1, 7, 1, 7, 7, 49, 1, 7, 7, 49, 7, 49, 49, 343, 1, 7, 7, 49, 7, 49, 49, 343, 7, 49, 49, 343, 49, 343, 343, 2401, 1, 7, 7, 49, 7, 49, 49, 343, 7, 49, 49, 343, 49, 343, 343, 2401, 7, 49, 49, 343, 49, 343, 343, 2401, 49, 343, 343, 2401, 343, 2401, 2401, 16807, 1, 7, 7, 49, 7, 49
Offset: 1

Views

Author

N. J. A. Sloane, Jun 25 2009

Keywords

Crossrefs

Programs

  • Mathematica
    7^(DigitCount[Range[70],2,1]-1) (* Harvey P. Dale, Feb 15 2015 *)

A151791 a(1)=1; for n > 1, a(n) = 7*6^(wt(n-1)-1).

Original entry on oeis.org

1, 7, 7, 42, 7, 42, 42, 252, 7, 42, 42, 252, 42, 252, 252, 1512, 7, 42, 42, 252, 42, 252, 252, 1512, 42, 252, 252, 1512, 252, 1512, 1512, 9072, 7, 42, 42, 252, 42, 252, 252, 1512, 42, 252, 252, 1512, 252, 1512, 1512, 9072, 42, 252, 252, 1512, 252, 1512, 1512, 9072, 252
Offset: 1

Views

Author

N. J. A. Sloane, Jun 25 2009

Keywords

Comments

wt(n) is the Hamming weight = binary weight of n (A000120).

Examples

			From _Omar E. Pol_, Feb 26 2015: (Start)
Written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
1;
7;
7,42;
7,42,42,252;
7,42,42,252,42,252,252,1512;
7,42,42,252,42,252,252,1512,42,252,252,1512,252,1512,1512,9072;
7,42,42,252,42,252,252,1512,42,252,252,1512,252,1512,1512,9072,42,252,252,1512,252,1512,1512,9072,252,...
It appears that the right border gives A003949.
It appears that the row sums give A000420.
(End)
		

Crossrefs

Cf. A011782, A000120, A000420, A151792 (partial sums).

Programs

  • Mathematica
    a[n_] := 7*6^(Total@ IntegerDigits[n - 1, 2] - 1); a[1] = 1; Array[a, 57] (* Michael De Vlieger, Nov 01 2022 *)

A164783 a(n) = 7^n-6.

Original entry on oeis.org

1, 43, 337, 2395, 16801, 117643, 823537, 5764795, 40353601, 282475243, 1977326737, 13841287195, 96889010401, 678223072843, 4747561509937, 33232930569595, 232630513987201, 1628413597910443, 11398895185373137
Offset: 1

Views

Author

Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009

Keywords

Comments

Minoli defined the sequences and concepts that follow in the 1980 IEEE paper below: - Sequence m (n,t) = (n^t) - (n-1) for t=2 to infinity is called a Mersenne Sequence Rooted on n - If n is prime, this sequence is called a Legitimate Mersenne Sequence - Any j belonging to the sequence m (n,t) is called a Generalized Mersenne Number (n-GMN) - If j belonging to the sequence m (n,t) is prime, it is then called a n-Generalized Mersenne Prime (n-GMP). Note: m (n,t) = n* m (n,t-1) + n^2 - 2*n+1. This sequence related to sequences: A014232 and A014224; A135535 and A059266. These numbers play a role in the context of hyperperfect numbers.

References

  • Daniel Minoli, Sufficient Forms For Generalized Perfect Numbers, Ann. Fac. Sciences, Univ. Nation. Zaire, Section Mathem. Vol. 4, No. 2, Dec 1978, pp. 277-302.
  • Daniel Minoli, New Results For Hyperperfect Numbers, Abstracts American Math. Soc., October 1980, Issue 6, Vol. 1, pp. 561.
  • Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)

Crossrefs

Programs

Formula

a(n) = 7*a(n-1)+36 with n>1, a(1)=1. - Vincenzo Librandi, Nov 30 2010
G.f.: x*(1+35*x)/((1-x)*(1-7*x)). - Colin Barker, Mar 08 2012
a(n) = 8*a(n-1) - 7*a(n-2) for n>2, a(1)=1, a(2)=43. - Vincenzo Librandi, Feb 06 2013
a(n) = A000420(n) - 6 for n>0. - Michel Marcus, Aug 31 2013

Extensions

More terms a(8)-a(19) from Vincenzo Librandi, Oct 29 2009

A165425 a(1) = 1, a(2) = 7, a(n) = product of the previous terms for n >= 3.

Original entry on oeis.org

1, 7, 7, 49, 2401, 5764801, 33232930569601, 1104427674243920646305299201, 1219760487635835700138573862562971820755615294131238401
Offset: 1

Views

Author

Jaroslav Krizek, Sep 17 2009

Keywords

Programs

  • Mathematica
    a[1]:= 1; a[2]:= 7; a[n_]:= Product[a[j], {j,1,n-1}]; Table[a[n],{n,1, 12}] (* G. C. Greubel, Oct 19 2018 *)
  • PARI
    {a(n) = if(n==1, 1, if(n==2, 7, prod(j=1,n-1, a(j))))};
    for(n=1,10, print1(a(n), ", ")) \\ G. C. Greubel, Oct 19 2018

Formula

a(1) = 1, a(2) = 7, a(n) = Product_{i=1..n-1} a(i), n >= 3.
a(1) = 1, a(2) = 7, a(n) = A000420(2^(n-3)) = 7^(2^(n-3)), n >= 3.
a(1) = 1, a(2) = 7, a(3) = 7, a(n) = (a(n-1))^2, n >= 4.

Extensions

More terms from Vincenzo Librandi, Apr 21 2010

A175434 (Digit sum of 2^n) mod n.

Original entry on oeis.org

0, 0, 2, 3, 0, 4, 4, 5, 8, 7, 3, 7, 7, 8, 11, 9, 14, 1, 10, 11, 5, 3, 18, 13, 4, 14, 8, 15, 12, 7, 16, 26, 29, 27, 24, 28, 19, 29, 32, 21, 9, 4, 13, 14, 17, 24, 21, 25, 16, 26, 29, 27, 24, 28, 37, 29, 23, 12, 18, 22, 13, 23, 26, 24, 21, 43, 43, 35, 20, 0, 15, 37, 37, 56, 50, 30, 27, 22, 31, 32, 26, 42, 39, 34, 43, 26, 20, 27, 24, 28, 55, 47, 32, 57, 45, 31, 40, 14, 8, 15
Offset: 1

Views

Author

N. J. A. Sloane, Dec 03 2010

Keywords

Examples

			For n = 1,2,3,4,5,6, the digit-sum of 2^n is 2,4,8,7,5,10, so
a(1) through a(6) are 0,0,2,3,0,4. - _N. J. A. Sloane_, Aug 12 2014
		

Crossrefs

Sum of digits of k^n mod n: (k=2) A000079, A001370, A175434, A175169; (k=3) A000244, A004166, A175435, A067862; (k=5) A000351, A066001, A175456; (k=6) A000400, A066002, A175457, A067864; (k=7) A000420, A066003, A175512, A067863; (k=8) A062933; (k=13) A001022, A175527, A175528, A175525; (k=21) A175589; (k=167) A175558, A175559, A175560, A175552.

Programs

  • Mathematica
    Table[Mod[Total[IntegerDigits[2^n]],n],{n,100}] (* Harvey P. Dale, Aug 12 2014 *)

Extensions

Offset changed to 1 at the suggestion of Harvey P. Dale, Aug 12 2014
Previous Showing 51-60 of 162 results. Next