cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A162974 Triangle read by rows: T(n,k) is the number of derangements of {1,2,...,n} having k cycles of length 2 (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 6, 0, 3, 24, 20, 0, 160, 90, 0, 15, 1140, 504, 210, 0, 8988, 4480, 1260, 0, 105, 80864, 41040, 9072, 2520, 0, 809856, 404460, 100800, 18900, 0, 945, 8907480, 4447520, 1128600, 166320, 34650, 0, 106877320, 53450496, 13347180, 2217600
Offset: 0

Views

Author

Emeric Deutsch, Jul 22 2009

Keywords

Comments

Row n has 1 + floor(n/2) entries.
Sum of entries in row n = A000166(n) (the derangement numbers).
T(n,0) = A038205(n).
Sum_{k>=0} k*T(n,k) = A000387(n).

Examples

			T(4,2)=3 because we have (12)(34), (13)(24), and (14)(23).
Triangle starts:
    1;
    0;
    0,  1;
    2,  0;
    6,  0,  3;
   24, 20,  0;
  160, 90,  0, 15;
  ...
		

Crossrefs

T(2n,n) gives A001147.
T(2n+3,n) gives A000906(n) = 2*A000457(n).

Programs

  • Maple
    G := exp((1/2)*z*(t*z-z-2))/(1-z): Gser := simplify(series(G, z = 0, 16)): for n from 0 to 13 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 13 do seq(coeff(P[n], t, j), j = 0 .. floor((1/2)*n)) end do;
    # second Maple program:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add((j-1)!*
          `if`(j=2, x, 1)*b(n-j)*binomial(n-1, j-1), j=2..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Jan 27 2022
  • Mathematica
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[(j - 1)!*If[j == 2, x, 1]*b[n - j]*Binomial[n - 1, j - 1], {j, 2, n}]]];
    T[n_] := With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Sep 17 2024, after Alois P. Heinz *)

Formula

E.g.f.: G(t,z) = exp(z(tz-z-2)/2)/(1-z).

A259877 If n is even then a(n) = n!/( 2^(n/2)*(n/2)! ), otherwise a(n) = n!/( 3*2^((n-1)/2)*((n-3)/2)! ).

Original entry on oeis.org

1, 1, 3, 10, 15, 105, 105, 1260, 945, 17325, 10395, 270270, 135135, 4729725, 2027025, 91891800, 34459425, 1964187225, 654729075, 45831035250, 13749310575, 1159525191825, 316234143225, 31623414322500, 7905853580625, 924984868933125, 213458046676875, 28887988983603750, 6190283353629375
Offset: 2

Views

Author

N. J. A. Sloane, Jul 09 2015

Keywords

Crossrefs

A001147 alternating with A000457. Interlaced diagonal of A008299.

Programs

  • Maple
    f:=proc(n) if n mod 2 = 0 then
    n!/(2^(n/2)*(n/2)!) else
    n!/( 3*2^((n-1)/2)*((n-3)/2)! ); fi; end;
    [seq(f(n),n=2..30)];
  • Mathematica
    Table[(n!/6)*2^(-n/2)*(((2^(1/2)*(1-(-1)^n))/(n/2-3/2)!)+3*(1+(-1)^n)/(n/2)!), {n, 2, 30}] (* Wesley Ivan Hurt, Jul 10 2015 *)
  • PARI
    main(size)={v=vector(size);for(n=2, size+1, if(n%2==0, v[n-1]=n!/(2^(n/2)*(n/2)!), v[n-1]=n!/( 3*2^((n-1)/2)*((n-3)/2)!))); return(v);} /* Anders Hellström, Jul 10 2015 */
    
  • Python
    from _future_ import division
    A259877_list, a = [1], 1
    for n in range(2,10**2):
        a = 6*a//(n-1) if n % 2 else a*n*(n+1)//6
        A259877_list.append(a) # Chai Wah Wu, Jul 15 2015

Formula

a(n) = (n!/6)*2^(-n/2)*(((2^(1/2)*(1-(-1)^n))/(n/2-3/2)!)+3*(1+(-1)^n)/(n/2)!). - Wesley Ivan Hurt, Jul 10 2015
a(n+1) = a(n)*n*(n+1)/6 if n is even, a(n+1) = 6*a(n)/(n-1) if n is odd. - Chai Wah Wu, Jul 15 2015
a(2*n) = A001147(n), a(2*n+1) = A000457(n-1). - Yuchun Ji, Nov 02 2020

A275521 Number of (n+floor(n/2))-block bicoverings of an n-set.

Original entry on oeis.org

1, 0, 1, 4, 3, 40, 15, 420, 105, 5040, 945, 69300, 10395, 1081080, 135135, 18918900, 2027025, 367567200, 34459425, 7856748900, 654729075, 183324141000, 13749310575, 4638100767300, 316234143225, 126493657290000, 7905853580625, 3699939475732500, 213458046676875
Offset: 0

Views

Author

Alois P. Heinz, Jul 31 2016

Keywords

Comments

There are no bicoverings of an n-set with more than n+floor(n/2) blocks.

Examples

			a(2) = 1: 1|12|2.
a(3) = 4: 1|12|23|3, 1|13|2|23, 1|123|2|3, 12|13|2|3.
a(4) = 3: 1|12|2|3|34|4, 1|13|2|24|3|4, 1|14|2|23|3|4.
		

Crossrefs

Right border of triangle A059443.
Bisections give: A001147, 4*A000457(n-1) (for n>0).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, [1, 0, 1, 4, 3]
           [n+1], ((8*n-41)*a(n-1) +(6*n^2-12*n-12)*a(n-2)
           -(n-2)*(8*n-17)*a(n-3)) / (6*n-24))
        end:
    seq(a(n), n=0..30);

Formula

a(n) = A059443(n,n+floor(n/2)).

A327411 a(n) = multinomial(2*n+3; 3, 2, 2, ..., 2) (n times '2').

Original entry on oeis.org

1, 10, 210, 7560, 415800, 32432400, 3405402000, 463134672000, 79196028912000, 16631166071520000, 4207685016094560000, 1262305504828368000000, 443069232194757168000000, 179886108271071410208000000, 83647040346048205746720000000, 44165637302713452634268160000000
Offset: 0

Views

Author

Peter Luschny, Sep 07 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> combinat[multinomial](2*n+3, 3, 2$n):
    seq(a(n), n=0..17);  # Alois P. Heinz, Sep 07 2019
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    a[n_] := multinomial[2n+3, Join[{3}, Table[2, {n}]]];
    Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Apr 19 2025 *)
  • SageMath
    def a(n):
        return multinomial([3] + [2] * n)
    [a(n) for n in range(20)]

Formula

a(n) = 2^(-n-1)*Gamma(2*n + 4)/3.
a(n) = (2*(n-1)^2 + 9*n + 1)*a(n-1) for n > 0.
a(n) / n! = A000457(n).

A334824 Triangle, read by rows, of Lambert's numerator polynomials related to convergents of tan(x).

Original entry on oeis.org

1, 3, 0, 15, 0, -1, 105, 0, -10, 0, 945, 0, -105, 0, 1, 10395, 0, -1260, 0, 21, 0, 135135, 0, -17325, 0, 378, 0, -1, 2027025, 0, -270270, 0, 6930, 0, -36, 0, 34459425, 0, -4729725, 0, 135135, 0, -990, 0, 1, 654729075, 0, -91891800, 0, 2837835, 0, -25740, 0, 55, 0, 13749310575, 0, -1964187225, 0, 64324260, 0, -675675, 0, 2145, 0, -1
Offset: 0

Views

Author

G. C. Greubel, May 13 2020, following a suggestion from Michel Marcus

Keywords

Comments

Lambert's denominator polynomials related to convergents of tan(x), f(n, x), are given in A334823.

Examples

			Polynomials:
g(0, x) = 1;
g(1, x) = 3*x;
g(2, x) = 15*x^2 - 1;
g(3, x) = 105*x^3 - 10*x;
g(4, x) = 945*x^4 - 105*x^2 + 1;
g(5, x) = 10395*x^5 - 1260*x^3 + 21*x;
g(6, x) = 135135*x^6 - 17325*x^4 + 378*x^2 - 1;
g(7, x) = 2027025*x^7 - 270270*x^5 + 6930*x^3 - 36*x.
Triangle of coefficients begins as:
        1;
        3, 0;
       15, 0,      -1;
      105, 0,     -10, 0;
      945, 0,    -105, 0,    1;
    10395, 0,   -1260, 0,   21, 0;
   135135, 0,  -17325, 0,  378, 0,  -1;
  2027025, 0, -270270, 0, 6930, 0, -36, 0.
		

Crossrefs

Columns k: A001147 (k=0), A000457 (k=2), A001881 (k=4), A130563 (k=6).

Programs

  • Magma
    C := ComplexField();
    T:= func< n, k| Round( i^k*Factorial(2*n-k+1)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k+1)*Factorial(n-k)) ) >;
    [T(n,k): k in [0..n], n in [0..10]];
    
  • Maple
    T:= (n, k) -> I^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!);
    seq(seq(T(n, k), k = 0..n), n = 0..10);
  • Mathematica
    (* First program *)
    y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x];
    g[n_, k_]:= Coefficient[((-I)^n/2)*(y[n+1, I*x] + (-1)^n*y[n+1, -I*x]), x, k];
    Table[g[n, k], {n,0,10}, {k,n,0,-1}]//Flatten
    (* Second program *)
    Table[I^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!), {n,0,10}, {k,0,n}]//Flatten
  • Sage
    [[ i^k*factorial(2*n-k+1)*(1+(-1)^k)/(2^(n-k+1)*factorial(k+1)*factorial(n-k)) for k in (0..n)] for n in (0..10)]

Formula

Equals the coefficients of the polynomials, g(n, x), defined by: (Start)
g(n, x) = Sum_{k=0..floor(n/2)} ((-1)^k*(2*n-2*k+1)!/((2*k+1)!*(n-2*k)!))*(x/2)^(n-2*k).
g(n, x) = ((2*n+1)!/n!)*(x/2)^n*Hypergeometric2F3(-n/2, (1-n)/2; 3/2, -n, -n-1/2; -1/x^2).
g(n, x) = ((-i)^n/2)*(y(n+1, i*x) + (-1)^n*y(n+1, -i*x)), where y(n, x) are the Bessel Polynomials.
g(n, x) = (2*n-1)*x*g(n-1, x) - g(n-2, x).
E.g.f. of g(n, x): sin((1 - sqrt(1-2*x*t))/2)/sqrt(1-2*x*t).
g(n, 1) = (-1)^n*g(n, -1) = A053984(n) = (-1)^n*A053983(-n-1) = (-1)^n*f(-n-1, 1).
g(n, 2) = (-1)^n*g(n, -2) = A053987(n+1). (End)
As a number triangle:
T(n, k) = i^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!), where i = sqrt(-1).
T(n, 0) = A001147(n+1).

A112000 One half of third column (k=2) of triangle A111999.

Original entry on oeis.org

-3, 65, -1190, 22050, -433125, 9144135, -208107900, 5099994900, -134219460375, 3781060408125, -113633468798850, 3631422078033750, -123022987568105625, 4405418319999571875, -166312279434175875000, 6602853358582065585000, -275059081486584416896875
Offset: 0

Author

Wolfdieter Lang, Sep 12 2005

Keywords

Crossrefs

Cf. Second (k=1) column: A000906(n+2)*(-1)^n = 2*A000457(n+2)*(-1)^n, n>=0.

Formula

a(n)=A111999(n+3, 2)/2, n>=0.
Conjecture: +n*(4*n+5)*a(n) +(2*n+3)*(n+2)*(4*n+9)*a(n-1)=0. - R. J. Mathar, Jul 09 2017

A380281 Triangle T(n, k) read by rows: T(n, k) = 2^n*binomial(2*n + 1, 2*k + 1) * Pochhammer(1/2, n - k) * Pochhammer(1/2, k).

Original entry on oeis.org

1, 3, 1, 15, 10, 3, 105, 105, 63, 15, 945, 1260, 1134, 540, 105, 10395, 17325, 20790, 14850, 5775, 945, 135135, 270270, 405405, 386100, 225225, 73710, 10395, 2027025, 4729725, 8513505, 10135125, 7882875, 3869775, 1091475, 135135, 34459425, 91891800, 192972780, 275675400, 268017750, 175429800, 74220300, 18378360, 2027025
Offset: 0

Author

Thomas Scheuerle, Jan 18 2025

Keywords

Examples

			Triangle begins:
n\k      0 |      1 |      2 |      3 |      4 |       5 |      6 |     7 |
[0]       1,
[1]       3,       1
[2]      15,      10,       3
[3]     105,     105,      63,       15
[4]     945,    1260,    1134,      540,     105
[5]   10395,   17325,   20790,    14850,    5775,     945
[6]  135135,  270270,  405405,   386100,  225225,   73710,   10395
[7] 2027025, 4729725, 8513505, 10135125, 7882875, 3869775, 1091475, 135135
		

Crossrefs

T(n, 1) = A001147(n+1), T(n, 2) = A000457(n-1), T(n, 3) = A001881(n+3)*3, T(n, n) = A001147(n).
Cf. A076729, (conj. row sums), A103327, A173424.

Programs

  • Maple
    T := (n,k) -> 2^n*binomial(2*n + 1, 2*k + 1)*pochhammer(1/2, n - k)*pochhammer(1/2, k):
    for n from 0 to 7 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Jan 21 2025
  • Mathematica
    A380281[n_, k_] := (2*n - 1)!!*Binomial[n, k]*Binomial[2*n + 1, 2*k + 1]/Binomial[2*n, 2*k];
    Table[A380281[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 22 2025 *)
  • PARI
    T(n, k) = Vec(O(x^(1+n))+(1+x)^(n+1)*hypergeom([1,1/2+n+1],3/2,-x)*(2*(n+1))!/(2^(n+1)*(n+1)!))[1+k]
    
  • PARI
    doublefact(n) = prod(i=0, (n-1)\2, n - 2*i )
    T(n, k) = doublefact(2*n-1) * binomial(n, k) * binomial(2*n+1, 2*k+1) / binomial(2*n, 2*k)
    
  • SageMath
    rf = rising_factorial
    def T(n, k): return 2^n*binomial(2*n+1, 2*k+1)*rf(1/2, n-k)*rf(1/2, k)
    for n in range(9): print([T(n, k) for k in range(n+1)])  # Peter Luschny, Jan 21 2025

Formula

Coefficients for the series representation of Owen's T-function Ot(x, m) = atan(m)/(2*Pi) + Sum_{s>=0} (-1)^(s+1)*m*(Sum_{r=0..s} T(s, r)*m^(2*s))*x^(2+2*s)/(2*Pi*(2+2*s)!).
Ot(x, m) - atan(m)/(2*Pi) = -V(x, x*m), where V is Nicholson's V-function. V(h, q) = Integral_{x=0..h} Integral_{y=0..q*x/h} phi(x)*phi(y) dydx, where phi(x) is the standard normal density exp(-x^2/2)/sqrt(2*Pi).
G.f. of row n: ((1 + x)^(n+1)*Hypergeometric2F1[1, 1/2 + n + 1, 3/2, -x]*(2*(n+1))!)/(2^(n+1)*(n+1)!).
T(n, k) = A103327(n, k)*A173424(n, k).
T(n, k) = (2*n-1)!! * binomial(n, k) * binomial(2*n+1, 2*k+1) / binomial(2*n, 2*k).
Conjecture: Row sums are A076729.
Previous Showing 11-17 of 17 results.