A162974
Triangle read by rows: T(n,k) is the number of derangements of {1,2,...,n} having k cycles of length 2 (0 <= k <= floor(n/2)).
Original entry on oeis.org
1, 0, 0, 1, 2, 0, 6, 0, 3, 24, 20, 0, 160, 90, 0, 15, 1140, 504, 210, 0, 8988, 4480, 1260, 0, 105, 80864, 41040, 9072, 2520, 0, 809856, 404460, 100800, 18900, 0, 945, 8907480, 4447520, 1128600, 166320, 34650, 0, 106877320, 53450496, 13347180, 2217600
Offset: 0
T(4,2)=3 because we have (12)(34), (13)(24), and (14)(23).
Triangle starts:
1;
0;
0, 1;
2, 0;
6, 0, 3;
24, 20, 0;
160, 90, 0, 15;
...
-
G := exp((1/2)*z*(t*z-z-2))/(1-z): Gser := simplify(series(G, z = 0, 16)): for n from 0 to 13 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 13 do seq(coeff(P[n], t, j), j = 0 .. floor((1/2)*n)) end do;
# second Maple program:
b:= proc(n) option remember; expand(`if`(n=0, 1, add((j-1)!*
`if`(j=2, x, 1)*b(n-j)*binomial(n-1, j-1), j=2..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
seq(T(n), n=0..14); # Alois P. Heinz, Jan 27 2022
-
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[(j - 1)!*If[j == 2, x, 1]*b[n - j]*Binomial[n - 1, j - 1], {j, 2, n}]]];
T[n_] := With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Sep 17 2024, after Alois P. Heinz *)
A259877
If n is even then a(n) = n!/( 2^(n/2)*(n/2)! ), otherwise a(n) = n!/( 3*2^((n-1)/2)*((n-3)/2)! ).
Original entry on oeis.org
1, 1, 3, 10, 15, 105, 105, 1260, 945, 17325, 10395, 270270, 135135, 4729725, 2027025, 91891800, 34459425, 1964187225, 654729075, 45831035250, 13749310575, 1159525191825, 316234143225, 31623414322500, 7905853580625, 924984868933125, 213458046676875, 28887988983603750, 6190283353629375
Offset: 2
- Chai Wah Wu, Table of n, a(n) for n = 2..501
- D. L. Andrews, Letter to N. J. A. Sloane, Apr 10 1978.
- D. L. Andrews and T. Thirunamachandran, On three-dimensional rotational averages, J. Chem. Phys., 67 (1977), 5026-5033. See N_n.
- D. L. Andrews and T. Thirunamachandran, On three-dimensional rotational averages, J. Chem. Phys., 67 (1977), 5026-5033. [Annotated scanned copy]
-
f:=proc(n) if n mod 2 = 0 then
n!/(2^(n/2)*(n/2)!) else
n!/( 3*2^((n-1)/2)*((n-3)/2)! ); fi; end;
[seq(f(n),n=2..30)];
-
Table[(n!/6)*2^(-n/2)*(((2^(1/2)*(1-(-1)^n))/(n/2-3/2)!)+3*(1+(-1)^n)/(n/2)!), {n, 2, 30}] (* Wesley Ivan Hurt, Jul 10 2015 *)
-
main(size)={v=vector(size);for(n=2, size+1, if(n%2==0, v[n-1]=n!/(2^(n/2)*(n/2)!), v[n-1]=n!/( 3*2^((n-1)/2)*((n-3)/2)!))); return(v);} /* Anders Hellström, Jul 10 2015 */
-
from _future_ import division
A259877_list, a = [1], 1
for n in range(2,10**2):
a = 6*a//(n-1) if n % 2 else a*n*(n+1)//6
A259877_list.append(a) # Chai Wah Wu, Jul 15 2015
A275521
Number of (n+floor(n/2))-block bicoverings of an n-set.
Original entry on oeis.org
1, 0, 1, 4, 3, 40, 15, 420, 105, 5040, 945, 69300, 10395, 1081080, 135135, 18918900, 2027025, 367567200, 34459425, 7856748900, 654729075, 183324141000, 13749310575, 4638100767300, 316234143225, 126493657290000, 7905853580625, 3699939475732500, 213458046676875
Offset: 0
a(2) = 1: 1|12|2.
a(3) = 4: 1|12|23|3, 1|13|2|23, 1|123|2|3, 12|13|2|3.
a(4) = 3: 1|12|2|3|34|4, 1|13|2|24|3|4, 1|14|2|23|3|4.
-
a:= proc(n) option remember; `if`(n<5, [1, 0, 1, 4, 3]
[n+1], ((8*n-41)*a(n-1) +(6*n^2-12*n-12)*a(n-2)
-(n-2)*(8*n-17)*a(n-3)) / (6*n-24))
end:
seq(a(n), n=0..30);
A327411
a(n) = multinomial(2*n+3; 3, 2, 2, ..., 2) (n times '2').
Original entry on oeis.org
1, 10, 210, 7560, 415800, 32432400, 3405402000, 463134672000, 79196028912000, 16631166071520000, 4207685016094560000, 1262305504828368000000, 443069232194757168000000, 179886108271071410208000000, 83647040346048205746720000000, 44165637302713452634268160000000
Offset: 0
-
a:= n-> combinat[multinomial](2*n+3, 3, 2$n):
seq(a(n), n=0..17); # Alois P. Heinz, Sep 07 2019
-
multinomial[n_, k_List] := n!/Times @@ (k!);
a[n_] := multinomial[2n+3, Join[{3}, Table[2, {n}]]];
Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Apr 19 2025 *)
-
def a(n):
return multinomial([3] + [2] * n)
[a(n) for n in range(20)]
A334824
Triangle, read by rows, of Lambert's numerator polynomials related to convergents of tan(x).
Original entry on oeis.org
1, 3, 0, 15, 0, -1, 105, 0, -10, 0, 945, 0, -105, 0, 1, 10395, 0, -1260, 0, 21, 0, 135135, 0, -17325, 0, 378, 0, -1, 2027025, 0, -270270, 0, 6930, 0, -36, 0, 34459425, 0, -4729725, 0, 135135, 0, -990, 0, 1, 654729075, 0, -91891800, 0, 2837835, 0, -25740, 0, 55, 0, 13749310575, 0, -1964187225, 0, 64324260, 0, -675675, 0, 2145, 0, -1
Offset: 0
Polynomials:
g(0, x) = 1;
g(1, x) = 3*x;
g(2, x) = 15*x^2 - 1;
g(3, x) = 105*x^3 - 10*x;
g(4, x) = 945*x^4 - 105*x^2 + 1;
g(5, x) = 10395*x^5 - 1260*x^3 + 21*x;
g(6, x) = 135135*x^6 - 17325*x^4 + 378*x^2 - 1;
g(7, x) = 2027025*x^7 - 270270*x^5 + 6930*x^3 - 36*x.
Triangle of coefficients begins as:
1;
3, 0;
15, 0, -1;
105, 0, -10, 0;
945, 0, -105, 0, 1;
10395, 0, -1260, 0, 21, 0;
135135, 0, -17325, 0, 378, 0, -1;
2027025, 0, -270270, 0, 6930, 0, -36, 0.
-
C := ComplexField();
T:= func< n, k| Round( i^k*Factorial(2*n-k+1)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k+1)*Factorial(n-k)) ) >;
[T(n,k): k in [0..n], n in [0..10]];
-
T:= (n, k) -> I^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!);
seq(seq(T(n, k), k = 0..n), n = 0..10);
-
(* First program *)
y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x];
g[n_, k_]:= Coefficient[((-I)^n/2)*(y[n+1, I*x] + (-1)^n*y[n+1, -I*x]), x, k];
Table[g[n, k], {n,0,10}, {k,n,0,-1}]//Flatten
(* Second program *)
Table[I^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!), {n,0,10}, {k,0,n}]//Flatten
-
[[ i^k*factorial(2*n-k+1)*(1+(-1)^k)/(2^(n-k+1)*factorial(k+1)*factorial(n-k)) for k in (0..n)] for n in (0..10)]
A112000
One half of third column (k=2) of triangle A111999.
Original entry on oeis.org
-3, 65, -1190, 22050, -433125, 9144135, -208107900, 5099994900, -134219460375, 3781060408125, -113633468798850, 3631422078033750, -123022987568105625, 4405418319999571875, -166312279434175875000, 6602853358582065585000, -275059081486584416896875
Offset: 0
Cf. Second (k=1) column:
A000906(n+2)*(-1)^n = 2*
A000457(n+2)*(-1)^n, n>=0.
A380281
Triangle T(n, k) read by rows: T(n, k) = 2^n*binomial(2*n + 1, 2*k + 1) * Pochhammer(1/2, n - k) * Pochhammer(1/2, k).
Original entry on oeis.org
1, 3, 1, 15, 10, 3, 105, 105, 63, 15, 945, 1260, 1134, 540, 105, 10395, 17325, 20790, 14850, 5775, 945, 135135, 270270, 405405, 386100, 225225, 73710, 10395, 2027025, 4729725, 8513505, 10135125, 7882875, 3869775, 1091475, 135135, 34459425, 91891800, 192972780, 275675400, 268017750, 175429800, 74220300, 18378360, 2027025
Offset: 0
Triangle begins:
n\k 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
[0] 1,
[1] 3, 1
[2] 15, 10, 3
[3] 105, 105, 63, 15
[4] 945, 1260, 1134, 540, 105
[5] 10395, 17325, 20790, 14850, 5775, 945
[6] 135135, 270270, 405405, 386100, 225225, 73710, 10395
[7] 2027025, 4729725, 8513505, 10135125, 7882875, 3869775, 1091475, 135135
-
T := (n,k) -> 2^n*binomial(2*n + 1, 2*k + 1)*pochhammer(1/2, n - k)*pochhammer(1/2, k):
for n from 0 to 7 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Jan 21 2025
-
A380281[n_, k_] := (2*n - 1)!!*Binomial[n, k]*Binomial[2*n + 1, 2*k + 1]/Binomial[2*n, 2*k];
Table[A380281[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 22 2025 *)
-
T(n, k) = Vec(O(x^(1+n))+(1+x)^(n+1)*hypergeom([1,1/2+n+1],3/2,-x)*(2*(n+1))!/(2^(n+1)*(n+1)!))[1+k]
-
doublefact(n) = prod(i=0, (n-1)\2, n - 2*i )
T(n, k) = doublefact(2*n-1) * binomial(n, k) * binomial(2*n+1, 2*k+1) / binomial(2*n, 2*k)
-
rf = rising_factorial
def T(n, k): return 2^n*binomial(2*n+1, 2*k+1)*rf(1/2, n-k)*rf(1/2, k)
for n in range(9): print([T(n, k) for k in range(n+1)]) # Peter Luschny, Jan 21 2025
Comments