cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 208 results. Next

A290180 Coefficients in expansion of E_8*Delta^2 where Delta is the generating function of Ramanujan's tau function (A000594).

Original entry on oeis.org

1, 432, 39960, -1418560, 17312940, -71928864, -462815680, 7500885120, -38038437810, 29000909200, 729783353376, -4661016429888, 13691625085880, -16503845217120, -14982974507520, 45085348093056, 99234456545637, -157805792764560, -1644659689877680
Offset: 2

Views

Author

Seiichi Manyama, Jul 23 2017

Keywords

Crossrefs

E_k*Delta^2: A290178 (k=4), A290048 (k=6), this sequence (k=8), A290181 (k=10), A290182 (k=14).
Cf. A000594, A008410 (E_8).

Programs

  • Mathematica
    terms = 19;
    E8[x_] = 1 + 480*Sum[k^7*x^k/(1 - x^k), {k, 1, terms}];
    E8[x]*QPochhammer[x]^48 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let b(q) be the determinant of the 3 X 3 matrix [E_6, E_8, E_12 ; E_8, E_10, E_14 ; E_10, E_12, E_16]. G.f. is -691^2*3617*b(q)/(1728^2*2^3*3*5^3*7^2*467).

A290181 Coefficients in expansion of E_10*Delta^2 where Delta is the generating function of Ramanujan's tau function (A000594).

Original entry on oeis.org

1, -312, -121680, 1004000, 37942020, -801594864, 6139193600, -11831002560, -151614128250, 1346611783000, -4592794000704, 3738595861728, 15192491492360, 47281379454000, -737660590018560, 2662090686805056, -3290770281735027, -4884703150768920
Offset: 2

Views

Author

Seiichi Manyama, Jul 23 2017

Keywords

Crossrefs

E_k*Delta^2: A290178 (k=4), A290048 (k=6), A290180 (k=8), this sequence (k=10), A290182 (k=14).
Cf. A000594, A013974 (E_10).

Programs

  • Mathematica
    terms = 18;
    E10[x_] = 1 - 264*Sum[k^9*x^k/(1 - x^k), {k, 1, terms}];
    E10[x]*QPochhammer[x]^48 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let b(q) be the determinant of the 3 X 3 matrix [E_6, E_10, E_12 ; E_8, E_12, E_14 ; E_10, E_14, E_16]. G.f. is 691^2*3617*b(q)/(1728^2*2^2*3*5^6*7^2*13).

A290182 Coefficients in expansion of E_14*Delta^2 where Delta is the generating function of Ramanujan's tau function (A000594).

Original entry on oeis.org

1, -72, -194400, -28866400, 13994100, 9650004336, -99683138560, -1007380800, 5570606272950, -32186306471000, -2717893793664, 724443400725408, -2662202398202200, -401005712372400, 19385312101171200, 24633489938571456, -449375771787124707
Offset: 2

Views

Author

Seiichi Manyama, Jul 23 2017

Keywords

Crossrefs

E_k*Delta^2: A290178 (k=4), A290048 (k=6), A290180 (k=8), A290181 (k=10), this sequence (k=14).
Cf. A000594, A058550 (E_14).

Programs

  • Mathematica
    terms = 17;
    E14[x_] = 1 - 24*Sum[k^13*x^k/(1 - x^k), {k, 1, terms}];
    E14[x]*QPochhammer[x]^48 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let b(q) be the determinant of the 3 X 3 matrix [E_8, E_10, E_14 ; E_10, E_12, E_16 ; E_12, E_14, E_18]. G.f. is -691^2*3617*43867*b(q)/(1728^2*2^6*3*5^3*7^2*97*7213).

A296991 Numbers k such that k^2 divides tau(k), where tau(k) = A000594(k) is Ramanujan's tau function.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 21, 24, 27, 32, 36, 40, 42, 48, 54, 64, 72, 81, 84, 96, 108, 120, 128, 135, 144, 162, 168, 189, 192, 216, 243, 256, 270, 280, 288, 324, 336, 360, 378, 384, 432, 448, 486, 512, 540, 576, 640, 648, 672, 729, 756, 768, 828, 840, 864
Offset: 1

Views

Author

Seiichi Manyama, Dec 22 2017

Keywords

Comments

2^k is a term for k >= 0.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Mod[RamanujanTau@n, n^2] == 0; Select[Range@875, fQ] (* Robert G. Wilson v, Dec 23 2017 *)
  • PARI
    is(n) = Mod(ramanujantau(n), n^2)==0 \\ Felix Fröhlich, Dec 24 2017
    
  • Python
    from itertools import count, islice
    from sympy import divisor_sigma
    def A296991_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: not -24*((m:=n+1>>1)**2*(0 if n&1 else m*(35*m - 52*n)*divisor_sigma(m)**2)+sum(i**3*(70*i - 140*n)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))) % n**2, count(max(startvalue,1)))
    A296991_list = list(islice(A296991_gen(),20)) # Chai Wah Wu, Nov 08 2022

A070563 a(n) = 0 if 3 divides the Ramanujan number tau(n) (A000594(n)), otherwise 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

N. J. A. Sloane, May 07 2002

Keywords

Comments

Multiplicative because A000594 is. Conjecture: a(3^k) = 0, if p == 1 mod 3, a(p^2k) = 0 and a(p^(2k+1)) = 1, if p == -1 mod 3, a(p^2k) = 1 and a(p^(2k+1)) = 0. - Christian G. Bower, Jun 10 2005
From Antti Karttunen, Jul 03 2024: (Start)
The above conjecture is not correct. The first counterexample occurs at n = 2401 = 7^4. My improved conjecture is that this is actually a characteristic function of nonmultiples of 3 whose sum of divisors is also a nonmultiple of 3, that is, having a following multiplicative formula: a(3^k) = 0, if p == 1 mod 3, a(p^e) = 1 if e != 2 (mod 3), otherwise 0, and if p == -1 mod 3, a(p^2k) = 1 and a(p^(2k+1)) = 0. This conjecture has now been proved correct by Seiichi Manyama.
Bower's formula is now submitted as A374053.
(End)

Crossrefs

Characteristic function of A374135, nonmultiples of 3 whose sum of divisors is also a nonmultiple of 3.

Programs

Formula

a(n) = A011655(n) * A353815(n), conjectured by Antti Karttunen, proved by Seiichi Manyama, Jul 03 2024

A128380 A097806^24 * A000594.

Original entry on oeis.org

1, 0, -48, -24, 1104, 1128, -15892, -25368, 156240, 360640, -1057908, -3600696, 4417678, 26438568, -3155508, -144207816, -112109568, 564538680, 1002957320, -1344487080, -5096138658, -111333800, 17182425012, 17552839368, -34668142443, -86942440944, 4993723500, 236551774320
Offset: 1

Views

Author

Gary W. Adamson, Feb 28 2007

Keywords

Comments

Conjecture: Given the infinite set of sequences generated from the pairwise operation on A000594 (A097806^k * A000594), k = 24, (A128380) is the only sequence in the set with a zero. The sequence generated from k=23 = (1, -1, -47, 23, 1081, 47, -15939, ...). Analogous conjecture with the partial sum operator: (Cf. A128378, A128379); in which zeros are conjectured to occur only with k=23 and k=24. A128380 mod 24 = 1, 0, 0, 0, 0, 0, -4, 0, 0, 16, ...

Crossrefs

Programs

  • Mathematica
    Nest[Prepend[Most[#] + Rest[#], First[#]] &, RamanujanTau[Range[30]], 24] (* Amiram Eldar, Jan 08 2025 *)

Formula

Pairwise operation performed 24 times on A000594

Extensions

More terms from Amiram Eldar, Jan 08 2025

A295645 Primes p such that tau(p) +- 1 is congruent to 0 (mod p), where tau is the Ramanujan tau function (A000594).

Original entry on oeis.org

11, 23, 691, 5807
Offset: 1

Views

Author

Seiichi Manyama, Nov 25 2017

Keywords

Comments

Nik Lygeros and Olivier Rozier found a new solution to the equation tau(p) + 1 == 0 (mod p) for prime p = 692881373, on September 6 2009. - Seiichi Manyama, Dec 30 2017
a(5) > 8*10^7. - Seiichi Manyama, Jan 01 2018
A superset of A193855. - Jud McCranie, Nov 06 2020

Examples

			tau(11) = 534612 and 11 | (534612 - 1), so a(1) = 11.
tau(23) = 18643272 and 23 | (18643272 - 1), so a(2) = 23.
tau(691) = -2747313442193908 and 691 | (-2747313442193908 - 1), so a(3) = 691.
tau(5807) = 237456233554906855056 and 5807 | (237456233554906855056 + 1), so a(4) = 5807.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[10^3], Function[p, AnyTrue[RamanujanTau[p] + {-1, 1}, Divisible[#, p] &]]] (* Michael De Vlieger, Dec 30 2017 *)
  • PARI
    isok(p) = my(rp=ramanujantau(p)); isprime(p) && !((rp-1) % p) || !((rp+1) % p); \\ Michel Marcus, Nov 07 2020

A296992 Largest number m such that n^m divides tau(n), where tau(n) = A000594(n) is Ramanujan's tau function.

Original entry on oeis.org

3, 2, 3, 1, 3, 1, 3, 2, 1, 0, 2, 0, 1, 1, 3, 0, 2, 0, 1, 2, 0, 0, 3, 1, 0, 2, 1, 0, 1, 0, 3, 0, 0, 1, 2, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0
Offset: 2

Views

Author

Seiichi Manyama, Dec 22 2017

Keywords

Examples

			tau(2) =   -24 and 2^3 divides   24, so a(2) = 3.
tau(3) =   252 and 3^2 divides  252, so a(3) = 2.
tau(4) = -1472 and 4^3 divides 1472, so a(4) = 3.
		

Crossrefs

Cf. A063938 (a(n)>=1), A296991 (a(n)>=2), A296993 (a(n)>=3).
Cf. A191599 (a(n)=0), A297000 (a(n)=1), A297001 (a(n)=2).

Programs

  • Mathematica
    f[n_] := Block[{m = 0}, While[Mod[RamanujanTau@n, n^m] == 0, m++]; m - 1]; Array[f, 93, 2] (* Robert G. Wilson v, Dec 23 2017 *)
    a[n_] := IntegerExponent[RamanujanTau[n], n]; Array[a, 100, 2] (* Amiram Eldar, Jan 09 2025 *)
  • PARI
    a(n) = valuation(ramanujantau(n), n); \\ Amiram Eldar, Jan 09 2025

A299157 Numbers k such that k+1 divides tau(k), where tau(k) = A000594(k) is Ramanujan's tau function.

Original entry on oeis.org

2, 3, 5, 6, 7, 11, 13, 17, 19, 20, 22, 23, 27, 29, 31, 41, 45, 47, 53, 55, 59, 68, 71, 76, 77, 79, 83, 87, 89, 91, 97, 104, 107, 114, 127, 137, 139, 149, 160, 167, 171, 177, 179, 183, 191, 195, 199, 209, 223, 229, 239, 240, 243, 251, 269, 275, 293, 297, 321, 343
Offset: 1

Views

Author

Seiichi Manyama, Feb 04 2018

Keywords

Comments

Numbers k such that A299163(k) = 0.

Crossrefs

Programs

  • Mathematica
    q[k_] := Divisible[RamanujanTau[k], k+1]; Select[Range[350], q] (* Amiram Eldar, Jan 08 2025 *)
  • PARI
    isok(n) = (ramanujantau(n) % (n+1)) == 0; \\ Michel Marcus, Feb 05 2018

A299163 a(n) = A000594(n) mod (n+1).

Original entry on oeis.org

1, 0, 0, 3, 0, 0, 0, 6, 7, 9, 0, 11, 0, 6, 8, 14, 0, 1, 0, 0, 2, 0, 0, 10, 15, 24, 0, 10, 0, 18, 0, 30, 12, 21, 12, 20, 30, 6, 24, 4, 0, 3, 16, 21, 0, 15, 0, 21, 43, 15, 20, 21, 0, 45, 0, 27, 42, 34, 0, 28, 46, 42, 56, 38, 48, 60, 16, 0, 14, 63, 0, 50, 60, 36, 12
Offset: 1

Views

Author

Seiichi Manyama, Feb 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], n+1]; Array[a, 100] (* Amiram Eldar, Jan 09 2025 *)
  • PARI
    {a(n) = ramanujantau(n)%(n+1)}
Previous Showing 11-20 of 208 results. Next