cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 208 results. Next

A128381 A007318^24 * A000594.

Original entry on oeis.org

1, 0, -324, -10976, -260898, -4919184, -67536616, -212659776, 28757879829, 1419855850728, 48139832128404, 1387340166285216, 36039677403855158, 861269016060967824, 18976682736434056968, 379832429643337648960, 6586595998856413482930, 83878202724395340243384, 7117837083803882256428
Offset: 0

Views

Author

Gary W. Adamson, Feb 28 2007

Keywords

Comments

Conjecture: given the bto performed any k times on A000594 (k = 1, 2, 3, ...); k = 6 and k = 24 are the only members of the set with zeros. k = 6 generates (1, -18, 0, 688, 4494, 5508, ...).

Crossrefs

Programs

  • Mathematica
    Nest[Table[Sum[Binomial[n-1, k-1] * #[[k]], {k, 1, n}], {n, 1, Length[#]}] &, RamanujanTau[Range[19]], 24] (* Amiram Eldar, Jan 08 2025 *)

Formula

Binomial transform operation performed 24 times on A000594, assuming A000594 has offset zero.

A278577 Ramanujan function tau(p) as p runs through the prime powers: a(n) = A000594(A000961(n)).

Original entry on oeis.org

1, -24, 252, -1472, 4830, -16744, 84480, -113643, 534612, -577738, 987136, -6905934, 10661420, 18643272, -25499225, -73279080, 128406630, -52843168, -196706304, -182213314, 308120442, -17125708, 2687348496, -1696965207, -1596055698, -5189203740, 6956478662, 2699296768, -15481826884, 9791485272
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, RamanujanTau[Select[Range[100], PrimePowerQ]]] (* Paolo Xausa, May 11 2024 *)
  • PARI
    list(lim) = apply(ramanujantau, select(x -> x == 1 || isprimepower(x), vector(lim, i, i))); \\ Amiram Eldar, Jan 09 2025
  • Python
    from itertools import count, islice
    from sympy import primefactors, divisor_sigma
    def A278577_gen(): # generator of terms
        yield 1
        for n in count(2):
            f = primefactors(n)
            if len(f) == 1:
                p, m = f[0], n+1>>1
                yield (q:=n**4)*(p*n-1)//(p-1)-24*((0 if n&1 else (m*(35*m - 52*n) + 18*n**2)*(m*divisor_sigma(m))**2)+sum((i*(i*(i*(70*i - 140*n) + 90*n**2) - 20*n**3) + q)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m)))
    A278577_list = list(islice(A278577_gen(),10)) # Chai Wah Wu, Nov 11 2022
    

A278578 a(n) = least value of k such that tau(k) = A000594(k) == n mod 23.

Original entry on oeis.org

4, 1, 59, 3481, 5959, 12117361, 351581, 344322938, 995153, 35509681, 1223853461, 117428054, 58714027, 2447706922, 71019362, 1990306, 172161469, 703162, 24234722, 11918, 6962, 118, 2
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2016

Keywords

Comments

A finite sequence, containing a(0) through a(22) only.

Examples

			tau(4) = -1472 is the first term of A000594 that is a multiple of 23, so a(0) = 4.
		

References

  • Wilton, John Raymond. "Congruence properties of Ramanujan's function τ(n)." Proceedings of the London Mathematical Society 2.1 (1930): 1-10. Table I gives all 23 terms.

Crossrefs

Extensions

More terms from Ray Chandler, Dec 01 2016

A290152 Coefficients in expansion of E_4*Delta^3 where Delta is the generating function of Ramanujan's tau function (A000594).

Original entry on oeis.org

1, 168, -12636, 392832, -7335174, 92207808, -804651624, 4626614784, -11834988165, -73870961696, 1115908456740, -7498139072256, 32630722986078, -90379426346496, 94395618447768, 450271639673856, -2625847472007243, 6203580643521072, -3151366507609936
Offset: 3

Views

Author

Seiichi Manyama, Jul 21 2017

Keywords

Crossrefs

Cf. A000594, A004009 (E_4).

Programs

  • Mathematica
    terms = 19;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]*QPochhammer[x]^(3*24) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let b(q) be the determinant of the 4 X 4 Hankel matrix [E_4, E_6, E_8, E_10 ; E_6, E_8, E_10, E_12 ; E_8, E_10, E_12, E_14 ; E_10, E_12, E_14, E_16]. G.f. is -691^3*3617*b(q)/(1728^3*2^4*3*5^6*7^2*467).

A296993 Numbers k such that k^3 divides tau(k), where tau(k) = A000594(k) is Ramanujan's tau function.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 24, 32, 64, 96, 128, 256, 288, 384, 512, 1024, 1536, 2048, 4096, 6144, 8192, 16384, 18432, 24576, 32768, 65536, 98304, 131072, 172032, 262144, 276480, 393216, 524288, 1048576, 1179648, 1572864, 1935360, 2097152, 2621440, 3538944, 4194304
Offset: 1

Views

Author

Seiichi Manyama, Dec 22 2017

Keywords

Comments

2^k is a term for k >= 0.

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import divisor_sigma
    def A296993_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: not -24*((m:=n+1>>1)**2*(0 if n&1 else (m*(35*m - 52*n) + 18*n**2)*divisor_sigma(m)**2)+sum((i*(i*(i*(70*i - 140*n) + 90*n**2)))*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))) % n**3, count(max(startvalue,1)))
    A296993_list = list(islice(A296993_gen(),10)) # Chai Wah Wu, Nov 08 2022

A299204 a(n) = A000594(n) mod (n-1).

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 4, 5, 0, 2, 9, 2, 0, 0, 1, 2, 3, 2, 2, 12, 18, 10, 22, 7, 12, 22, 2, 2, 5, 2, 11, 16, 15, 2, 31, 2, 12, 32, 3, 2, 8, 2, 27, 42, 27, 22, 9, 9, 16, 32, 32, 10, 33, 18, 0, 0, 30, 0, 29, 2, 38, 50, 28, 20, 39, 26, 48, 48, 0, 2, 4, 2, 5, 26, 35, 12
Offset: 2

Views

Author

Seiichi Manyama, Feb 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Mod[RamanujanTau@n, n - 1]; Array[f, 76, 2] (* Robert G. Wilson v, Feb 07 2018 *)
  • PARI
    {a(n) = ramanujantau(n)%(n-1)}

A299205 Numbers k such that k-1 divides tau(k), where tau(k) = A000594(k) is Ramanujan's tau function.

Original entry on oeis.org

2, 3, 10, 14, 15, 56, 57, 59, 70, 85, 105, 107, 116, 136, 209, 267, 295, 323, 352, 393, 415, 442, 530, 551, 645, 646, 760, 855, 1197, 1288, 1342, 1415, 1472, 1496, 1625, 1765, 1953, 2002, 2255, 2485, 2847, 2945, 3039, 3382, 3591, 3745, 3905, 4233, 4264, 4313
Offset: 1

Views

Author

Seiichi Manyama, Feb 05 2018

Keywords

Comments

Numbers k such that A299204(k) = 0.

Crossrefs

For the sequence when n is prime see A299172.

Programs

  • Mathematica
    Select[Range[2, 5000], Divisible[RamanujanTau[#], #-1] &] (* Amiram Eldar, Jan 10 2025 *)
  • PARI
    isok(n) = (ramanujantau(n) % (n-1)) == 0; \\ Michel Marcus, Feb 05 2018

A319134 Expansion of -((25*E_4^4 - 49*E_6^2*E4) + 48*E_6*E_4^2*E_2 + (-49*E_4^3 + 25*E_6^2)*E_2^2)/(3657830400*delta^2) where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively and delta is A000594.

Original entry on oeis.org

1, 86, 3750, 109672, 2419462, 43021728, 643548464, 8343640624, 95835049605, 991606081332, 9364586280842, 81571540591968, 661034448807902, 5019357866562208, 35927279225314344, 243657157464337888, 1572638456431119570, 9696997279843999470, 57313953586222481126, 325672739267123628976
Offset: 1

Views

Author

Seiichi Manyama, Sep 11 2018

Keywords

Examples

			((25*E_4^4 - 49*E_6^2*E4) + 48*E_6*E_4^2*E_2 + (-49*E_4^3 + 25*E_6^2)*E_2^2)/(delta^2) =  - 3657830400*q - 314573414400*q^2 - 13716864000000*q^3 - 401161575628800*q^4 - ... .
		

Crossrefs

Cf. A000594, A006352 (E_2), A004009 (E_4), A013973 (E_6), A082558, A281373,
About the numerator: A282012 (E_4^4), A282287 (E_6^2*E_4), A282596 (E_6*E_4^2*E_2), A008411 (E_4^3), A280869 (E_6^2), A281374 (E_2^2).

Programs

  • Mathematica
    nmax = 25; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); Rest[CoefficientList[Series[-((25*E4[x]^4 - 49*E6[x]^2*E4[x]) + 48*E6[x]*E4[x]^2*E2[x] + (-49*E4[x]^3 + 25*E6[x]^2)* E2[x]^2) / (3657830400 * x^2 * QPochhammer[x]^48), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 12 2018 *)

Formula

a(n) ~ exp(4*Pi*sqrt(2*n)) / (132300 * 2^(1/4) * Pi^2 * n^(23/4)). - Vaclav Kotesovec, Sep 12 2018

A034777 Dirichlet convolution of [ 1,1,1,... ] with Ramanujan numbers (A000594).

Original entry on oeis.org

1, -23, 253, -1495, 4831, -5819, -16743, 82985, -113390, -111113, 534613, -378235, -577737, 385089, 1222243, 1070121, -6905933, 2607970, 10661421, -7222345, -4235979, -12296099, 18643273, 20995205, -25494394, 13287951
Offset: 1

Views

Author

Keywords

Comments

Multiplicative because both A000012 and A000594 are. - Christian G. Bower, May 16 2005
Inverse Moebius transform of A000594. - Amiram Eldar, Jan 10 2025

Crossrefs

Cf. A000594.

Programs

  • Mathematica
    Table[DivisorSum[k, RamanujanTau], {k, 50}] (* Jan Mangaldan, Mar 15 2013 *)
  • PARI
    a(n) = sumdiv(n, d, ramanujantau(d)); \\ Amiram Eldar, Jan 10 2025

A063940 Composite numbers k such that Ramanujan's function tau(k) (A000594) is not divisible by k.

Original entry on oeis.org

22, 26, 33, 34, 38, 39, 44, 46, 51, 52, 55, 57, 58, 62, 65, 66, 68, 69, 74, 76, 77, 78, 82, 85, 86, 87, 93, 94, 95, 99, 102, 104, 106, 110, 111, 114, 116, 117, 118, 119, 121, 122, 123, 124, 129, 130, 132, 133, 134, 136, 138, 141, 142, 143, 145, 146, 148, 152, 153
Offset: 1

Views

Author

Robert G. Wilson v, Aug 31 2001

Keywords

Examples

			22 is a term because Ramanujan's tau(22) = 18643272 and 18643272 mod 22 = 10.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 70 ], Mod[ CoefficientList[ Take[ Expand[ Product[ (1 - x^k)^24, {k, 1, 70} ] ], 70 ], x ][ [ # ] ], # ] != 0 && ! PrimeQ[ # ] & ]
    (* First do *) <Dean Hickerson, Jan 03 2003 *)
Previous Showing 41-50 of 208 results. Next