cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A004105 Number of point-self-dual nets with 2n nodes. Also number of directed 2-multigraphs with loops on n nodes.

Original entry on oeis.org

1, 3, 45, 3411, 1809459, 7071729867, 208517974495911, 47481903377454219975, 85161307642554753639601848, 1221965550839348597865127102714827, 142024245093355901785105779901319683262778, 135056692539998733060710198802224149631056479068139
Offset: 0

Views

Author

Keywords

Comments

A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).
Also nonisomorphic relations on 3-state logic.

References

  • F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Prepend[Table[CycleIndex[Join[PairGroup[SymmetricGroup[n],Ordered], Permutations[Range[n^2-n+1,n^2]],2],s]/.Table[s[i]->3,{i,1,n^2-n}],{n,2,7}],1] (* Geoffrey Critzer, Oct 20 2012 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v];
    a[n_] := (s=0; Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Array[a, 15, 0] (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i])}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A004105(n): return int(sum(Fraction(3**((sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))<<1)+sum(q*r**2 for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 10 2024

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/ (1^s_1*s_1!*2^s_2*s_2!*...)) where fixA[s_1, s_2, ...] = 3^Sum_{i, j>=1} (gcd(i,j)*s_i*s_j).

Extensions

More terms from Vladeta Jovovic, Jan 14 2000
Formula from Christian G. Bower, Jan 06 2004

A326220 Number of non-Hamiltonian labeled n-vertex digraphs (with loops).

Original entry on oeis.org

1, 0, 12, 392, 46432, 20023232, 30595305216
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A digraph is Hamiltonian if it contains a directed cycle passing through every vertex exactly once.

Examples

			The a(2) = 12 digraph edge-sets:
  {}  {11}  {11,12}  {11,12,22}
      {12}  {11,21}  {11,21,22}
      {21}  {11,22}
      {22}  {12,22}
            {21,22}
		

Crossrefs

The unlabeled case is A326223.
The undirected case is A326239 (with loops) or A326207 (without loops).
The case without loops is A326218.
Digraphs (with loops) containing a Hamiltonian cycle are A326204.
Digraphs (with loops) not containing a Hamiltonian path are A326213.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],FindHamiltonianCycle[Graph[Range[n],DirectedEdge@@@#]]=={}&]],{n,4}] (* Mathematica 8.0+. Warning: Using HamiltonianGraphQ instead of FindHamiltonianCycle returns a(4) = 46336 which is incorrect *)

Extensions

a(5)-a(6) from Bert Dobbelaere, Jun 11 2024

A326223 Number of non-Hamiltonian unlabeled n-vertex digraphs (with loops).

Original entry on oeis.org

1, 0, 7, 80, 2186
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A digraph is Hamiltonian if it contains a directed cycle passing through every vertex exactly once.

Examples

			Non-isomorphic representatives of the a(2) = 7 digraph edge-sets:
  {}
  {11}
  {12}
  {11,12}
  {11,21}
  {11,22}
  {11,12,22}
		

Crossrefs

The labeled case is A326220.
The case without loops is A326222.
The undirected case is A246446 (without loops) or A326239 (with loops).
Hamiltonian unlabeled digraphs are A326226.
Unlabeled digraphs not containing a Hamiltonian path are A326224.

A000662 Number of relations with 3 arguments on n nodes.

Original entry on oeis.org

2, 136, 22377984, 768614354122719232, 354460798875983863749270670915141632, 146267071761884981524915186989628577728537526896649216991428608
Offset: 1

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 76 (2.2.31)
  • W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann., 174 (1967), 53-78.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Python
    from itertools import product
    from math import factorial, prod, lcm
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000662(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 02 2024

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2,...]/(1^s_1*s_1!*2^s_2*s_2!*...)) where fixA[s_1, s_2, ...] = 2^Sum_{i, j, k>=1} (i*j*k*s_i*s_j*s_k/lcm(i, j, k)). - Christian G. Bower, Jan 06 2004

A326213 Number of labeled n-vertex digraphs (with loops) not containing a (directed) Hamiltonian path.

Original entry on oeis.org

1, 2, 4, 128, 12352, 3826272, 3775441536
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A path is Hamiltonian if it passes through every vertex exactly once.

Crossrefs

The unlabeled case is A326224.
The case without loops is A326216.
Digraphs containing a Hamiltonian path are A326214.
Digraphs not containing a Hamiltonian cycle are A326220.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],FindHamiltonianPath[Graph[Range[n],DirectedEdge@@@#]]=={}&]],{n,0,3}] (* Mathematica 10.2+ *)

Formula

A002416(n) = a(n) + A326214(n).

Extensions

a(5)-a(6) from Bert Dobbelaere, Jun 11 2024

A326217 Number of labeled n-vertex digraphs (without loops) containing a Hamiltonian path.

Original entry on oeis.org

0, 0, 3, 48, 3324, 929005, 1014750550, 4305572108670
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Examples

			The a(3) = 48 edge-sets:
  {12,23}  {12,13,21}  {12,13,21,23}  {12,13,21,23,31}  {12,13,21,23,31,32}
  {12,31}  {12,13,23}  {12,13,21,31}  {12,13,21,23,32}
  {13,21}  {12,13,31}  {12,13,21,32}  {12,13,21,31,32}
  {13,32}  {12,13,32}  {12,13,23,31}  {12,13,23,31,32}
  {21,32}  {12,21,23}  {12,13,23,32}  {12,21,23,31,32}
  {23,31}  {12,21,31}  {12,13,31,32}  {13,21,23,31,32}
           {12,21,32}  {12,21,23,31}
           {12,23,31}  {12,21,23,32}
           {12,23,32}  {12,21,31,32}
           {12,31,32}  {12,23,31,32}
           {13,21,23}  {13,21,23,31}
           {13,21,31}  {13,21,23,32}
           {13,21,32}  {13,21,31,32}
           {13,23,31}  {13,23,31,32}
           {13,23,32}  {21,23,31,32}
           {13,31,32}
           {21,23,31}
           {21,23,32}
           {21,31,32}
           {23,31,32}
		

Crossrefs

The undirected case is A326206.
The unlabeled undirected case is A057864.
The case with loops is A326214.
Unlabeled digraphs with a Hamiltonian path are A326221.
Digraphs (without loops) not containing a Hamiltonian path are A326216.
Digraphs (without loops) containing a Hamiltonian cycle are A326219.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Tuples[Range[n],2],UnsameQ@@#&]],FindHamiltonianPath[Graph[Range[n],DirectedEdge@@@#]]!={}&]],{n,4}] (* Mathematica 10.2+ *)

Formula

A053763(n) = a(n) + A326216(n).

Extensions

a(5)-a(7) from Bert Dobbelaere, Feb 21 2023

A326218 Number of non-Hamiltonian labeled n-vertex digraphs (without loops).

Original entry on oeis.org

1, 0, 3, 49, 2902
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A digraph is Hamiltonian if it contains a directed cycle passing through every vertex exactly once.

Examples

			The a(3) = 49 edge-sets:
  {}  {12}  {12,13}  {12,13,21}  {12,13,21,23}
      {13}  {12,21}  {12,13,23}  {12,13,21,31}
      {21}  {12,23}  {12,13,31}  {12,13,23,32}
      {23}  {12,31}  {12,13,32}  {12,13,31,32}
      {31}  {12,32}  {12,21,23}  {12,21,23,32}
      {32}  {13,21}  {12,21,31}  {12,21,31,32}
            {13,23}  {12,21,32}  {13,21,23,31}
            {13,31}  {12,23,32}  {13,23,31,32}
            {13,32}  {12,31,32}  {21,23,31,32}
            {21,23}  {13,21,23}
            {21,31}  {13,21,31}
            {21,32}  {13,23,31}
            {23,31}  {13,23,32}
            {23,32}  {13,31,32}
            {31,32}  {21,23,31}
                     {21,23,32}
                     {21,31,32}
                     {23,31,32}
		

Crossrefs

The unlabeled case is A326222.
The undirected case is A326207.
The case with loops is A326220.
Digraphs (without loops) containing a Hamiltonian cycle are A326219.
Digraphs (without loops) not containing a Hamiltonian path are A326216.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Tuples[Range[n],2],UnsameQ@@#&]],FindHamiltonianCycle[Graph[Range[n],DirectedEdge@@@#]]=={}&]],{n,4}] (* Mathematica 8.0+. Warning: Using HamiltonianGraphQ instead of FindHamiltonianCycle returns a(4) = 2896 which is incorrect *)

Formula

A053763(n) = a(n) + A326219(n).

A326219 Number of labeled n-vertex Hamiltonian digraphs (without loops).

Original entry on oeis.org

0, 1, 1, 15, 1194
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A digraph is Hamiltonian if it contains a directed cycle passing through every vertex exactly once.

Examples

			The a(3) = 15 edge-sets:
  {12,23,31}  {12,13,21,32}  {12,13,21,23,31}  {12,13,21,23,31,32}
  {13,21,32}  {12,13,23,31}  {12,13,21,23,32}
              {12,21,23,31}  {12,13,21,31,32}
              {12,23,31,32}  {12,13,23,31,32}
              {13,21,23,32}  {12,21,23,31,32}
              {13,21,31,32}  {13,21,23,31,32}
		

Crossrefs

The unlabeled case is A326225.
The undirected case is A326208 (without loops) or A326240 (with loops).
The case with loops is A326204.
Digraphs (without loops) not containing a Hamiltonian cycle are A326218.
Digraphs (without loops) containing a Hamiltonian path are A326217.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Tuples[Range[n],2],UnsameQ@@#&]],FindHamiltonianCycle[Graph[Range[n],DirectedEdge@@@#]]!={}&]],{n,0,4}] (* Mathematica 8.0+. Warning: Using HamiltonianGraphQ instead of FindHamiltonianCycle returns a(4) = 1200 which is incorrect *)

Formula

A053763(n) = a(n) + A326218(n).

A001173 Half the number of binary relations on n unlabeled points.

Original entry on oeis.org

1, 5, 52, 1522, 145984, 48464496, 56141454464, 229148550030864, 3333310786076963968, 174695272746749919580928, 33301710992539090379269318144, 23278728241293494533015563325552128, 60084295633556503802059558812644803074048, 576025077880237078776946730871618386151571214336
Offset: 1

Views

Author

Keywords

References

  • M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2 GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/(2 n!)];
    Array[a, 12] (* Jean-François Alcover, Aug 01 2019, after Andrew Howroyd in A000595 *)
  • Python
    from itertools import product
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A001173(n): return int(sum(Fraction(1<>1 # Chai Wah Wu, Jul 02 2024

Formula

a(n) = A000595(n)/2. - Sean A. Irvine, Mar 16 2012

Extensions

More terms from Vladeta Jovovic, Apr 18 2000
a(13)-a(14) (based on A000595) from Pontus von Brömssen, Aug 04 2022

A326214 Number of labeled n-vertex digraphs (with loops) containing a (directed) Hamiltonian path.

Original entry on oeis.org

0, 0, 12, 384, 53184
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A path is Hamiltonian if it passes through every vertex exactly once.

Examples

			The a(2) = 12 edge-sets:
  {12}
  {21}
  {11,12}
  {11,21}
  {12,21}
  {12,22}
  {21,22}
  {11,12,21}
  {11,12,22}
  {11,21,22}
  {12,21,22}
  {11,12,21,22}
		

Crossrefs

The unlabeled case is A326221.
The undirected case is A326206.
The case without loops is A326217.
Digraphs not containing a Hamiltonian path are A326213.
Digraphs containing a Hamiltonian cycle are A326204.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],FindHamiltonianPath[Graph[Range[n],DirectedEdge@@@#]]!={}&]],{n,4}] (* Mathematica 10.2+ *)

Formula

A002416(n) = a(n) + A326213(n).
Previous Showing 11-20 of 48 results. Next