cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 81 results. Next

A322700 Number of unlabeled graphs with loops spanning n vertices.

Original entry on oeis.org

1, 1, 4, 14, 70, 454, 4552, 74168, 2129348, 111535148, 10812483376, 1945437208224, 650378721156736, 404749938336404704, 470163239887698967104, 1022592854829028311090816, 4177826139658552046627175072, 32163829440870460348768023969632
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2018

Keywords

Comments

The span of a graph is the union of its edges. The not necessarily spanning case is A000666.

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^PermutationCycles[Ordering[Map[Sort,Select[Tuples[Range[n],2],OrderedQ]/.Rule@@@Table[{i,prm[[i]]},{i,n}],{1}]],Length],{prm,Permutations[Range[n]]}]/n!,{n,0,8}]//Differences (* Mathematica 8.0+ *)
  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A322700(n): return int(sum(Fraction(1<>1)+1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))-sum(Fraction(1<>1)+1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n-1))) if n else 1 # Chai Wah Wu, Jul 14 2024

Formula

First differences of A000666.

A001930 Number of topologies, or transitive digraphs with n unlabeled nodes.

Original entry on oeis.org

1, 1, 3, 9, 33, 139, 718, 4535, 35979, 363083, 4717687, 79501654, 1744252509, 49872339897, 1856792610995, 89847422244493, 5637294117525695
Offset: 0

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Aug 02 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(3) = 9 topologies:
  {}  {}{1}  {}{12}        {}{123}
             {}{2}{12}     {}{3}{123}
             {}{1}{2}{12}  {}{23}{123}
                           {}{1}{23}{123}
                           {}{3}{23}{123}
                           {}{2}{3}{23}{123}
                           {}{3}{13}{23}{123}
                           {}{2}{3}{13}{23}{123}
                           {}{1}{2}{3}{12}{13}{23}{123}
(End)
		

References

  • Loic Foissy, Claudia Malvenuto, Frederic Patras, Infinitesimal and B_infinity-algebras, finite spaces, and quasi-symmetric functions, Journal of Pure and Applied Algebra, Elsevier, 2016, 220 (6), pp. 2434-2458. .
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218 (but the last entry is wrong).
  • M. Kolli, On the cardinality of the T_0-topologies on a finite set, Preprint, 2014.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
  • J. A. Wright, personal communication.
  • For further references concerning the enumeration of topologies and posets see under A000112 and A001035.

Crossrefs

Cf. A000798 (labeled topologies), A001035 (labeled posets), A001930 (unlabeled topologies), A000112 (unlabeled posets), A006057, A001928, A001929.
The case with unions only is A108798.
The case with intersections only is (also) A108798.
Partial sums are A326898 (the non-covering case).

Extensions

a(8)-a(12) from Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
a(13)-a(16) from Brinkmann's and McKay's paper, sent by Vladeta Jovovic, Jan 04 2006

A369199 Irregular triangle read by rows where T(n,k) is the number of labeled loop-graphs covering n vertices with k edges.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 1, 0, 0, 6, 17, 15, 6, 1, 0, 0, 3, 46, 150, 228, 206, 120, 45, 10, 1, 0, 0, 0, 45, 465, 1803, 3965, 5835, 6210, 4955, 2998, 1365, 455, 105, 15, 1, 0, 0, 0, 15, 645, 5991, 27364, 79470, 165555, 264050, 334713, 344526, 291200, 202860, 116190, 54258, 20349, 5985, 1330, 210, 21, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 18 2024

Keywords

Examples

			Triangle begins:
   1
   0   1
   0   1   3   1
   0   0   6  17  15   6   1
   0   0   3  46 150 228 206 120  45  10   1
Row n = 3 counts the following loop-graphs (loops shown as singletons):
  {1,23}   {1,2,3}     {1,2,3,12}    {1,2,3,12,13}   {1,2,3,12,13,23}
  {2,13}   {1,2,13}    {1,2,3,13}    {1,2,3,12,23}
  {3,12}   {1,2,23}    {1,2,3,23}    {1,2,3,13,23}
  {12,13}  {1,3,12}    {1,2,12,13}   {1,2,12,13,23}
  {12,23}  {1,3,23}    {1,2,12,23}   {1,3,12,13,23}
  {13,23}  {1,12,13}   {1,2,13,23}   {2,3,12,13,23}
           {1,12,23}   {1,3,12,13}
           {1,13,23}   {1,3,12,23}
           {2,3,12}    {1,3,13,23}
           {2,3,13}    {1,12,13,23}
           {2,12,13}   {2,3,12,13}
           {2,12,23}   {2,3,12,23}
           {2,13,23}   {2,3,13,23}
           {3,12,13}   {2,12,13,23}
           {3,12,23}   {3,12,13,23}
           {3,13,23}
           {12,13,23}
		

Crossrefs

The version without loops is A054548.
This is the covering case of A084546.
Column sums are A173219.
Row sums are A322661, unlabeled A322700.
The connected case is A369195, without loops A062734.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts simple graphs; also loop-graphs if shifted left.
A006129 counts covering graphs, unlabeled A002494.
A368927 counts choosable loop-graphs, covering A369140.
A369141 counts non-choosable loop-graphs, covering A369142.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{k}],Length[Union@@#]==n&]],{n,0,5},{k,0,Binomial[n+1,2]}]
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(serlaplace(exp(-x + O(x*x^n))*(sum(j=0, n, (1 + y)^binomial(j+1, 2)*x^j/j!)))) ]}
    { my(A=T(6)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Feb 02 2024

Formula

E.g.f.: exp(-x) * (Sum_{j >= 0} (1 + y)^binomial(j+1, 2)*x^j/j!). - Andrew Howroyd, Feb 02 2024

A002854 Number of unlabeled Euler graphs with n nodes; number of unlabeled two-graphs with n nodes; number of unlabeled switching classes of graphs with n nodes; number of switching classes of unlabeled signed complete graphs on n nodes; number of Seidel matrices of order n.

Original entry on oeis.org

1, 1, 2, 3, 7, 16, 54, 243, 2038, 33120, 1182004, 87723296, 12886193064, 3633057074584, 1944000150734320, 1967881448329407496, 3768516017219786199856, 13670271807937483065795200, 94109042015724412679233018144, 1232069666043220685614640133362240
Offset: 1

Views

Author

Keywords

Comments

Also called Eulerian graphs of strength 1.
"Switching" a graph at a node complements all the edges incident with that node. The illustration (see link) shows the 3 switching classes on 4 nodes. Switching at any node is the equivalence relation.
"Switching" a signed simple graph at a node negates the signs of all edges incident with that node.
A graph is an Euler graph iff every node has even degree. It need not be connected. (Note that some graph theorists require an Euler graph to be connected so it has an Euler circuit, and call these graphs "even" graphs.)
The objects being counted in this sequence are unlabeled.

Examples

			From _Joerg Arndt_, Feb 05 2010: (Start)
The a(4) = 3 Euler graphs on four nodes are:
   1)  o o     2)  o-o     3)  o-o
       o o         |/          | |
                   o o         o-o
(End)
		

References

  • F. Buekenhout, ed., Handbook of Incidence Geometry, 1995, p. 881.
  • F. C. Bussemaker, R. A. Mathon and J. J. Seidel, Tables of two-graphs, T.H.-Report 79-WSK-05, Technological University Eindhoven, Dept. Mathematics, 1979; also pp. 71-112 of "Combinatorics and Graph Theory (Calcutta, 1980)", Lect. Notes Math. 885, 1981.
  • CRC Handbook of Combinatorial Designs, 1996, p. 687.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 114, Eq. (4.7.1).
  • R. W. Robinson, Enumeration of Euler graphs, pp. 147-153 of F. Harary, editor, Proof Techniques in Graph Theory. Academic Press, NY, 1969.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1979.
  • J. J. Seidel, A survey of two-graphs, pp. 481-511 of Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973), Vol. I, Accademia Nazionale dei Lincei, Rome, 1976; also pp. 146-176 in Geometry and Combinatorics: Selected Works of J.J. Seidel, ed. D.G. Corneil and R. Mathon, Academic Press, Boston, 1991..
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections: A182012, A182055.
Row sums of A341941.

Programs

  • PARI
    A002854(n)={ /* Robinson's formula, simplified */ local(s=vector(n)); my( S=0, M()=sum( j=2,n, s[j]*sum( i=1,j-1, s[i]*gcd(i,j))) + sum( i=1,n, i*binomial(s[i],2)+(i\2-1)*s[i]) + !!vecextract(s,4^round(n/2)\3), inc()=!forstep(i=n,1,-1,s[i]n, s[i]=n); next(2))); t==n && S+=2^M()/prod(i=1,n,i^s[i]*s[i]!)); S} \\ M. F. Hasler, Apr 09 2012, adapted for current PARI version on Apr 12, 2018
    
  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A002854(n): return int(sum(Fraction(1<>1)-1)*r+(q*r*(r-1)>>1) for q, r in p.items())+any(q&1 for q in p),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 03 2024

Formula

a(n) = Sum_{s} 2^M(s)/Product_{i} i^s(i)*s(i)!, where the sum is over n-tuples s in [0..n]^n such that n = Sum i*s(i), M(s) = Sum_{iM. F. Hasler, Apr 15 2012; corrected by Sean A. Irvine, Nov 05 2014

Extensions

Terms up to a(18) confirmed by Vladeta Jovovic, Apr 18 2000
Name edited (changed "2-graph" to "two-graph" to avoid confusion with other 2-graphs) and comments on Eulerian graphs by Thomas Zaslavsky, Nov 21 2013
Name clarified by Thomas Zaslavsky, Apr 18 2019

A368597 Number of n-element sets of singletons or pairs of distinct elements of {1..n} with union {1..n}, or loop-graphs covering n vertices with n edges.

Original entry on oeis.org

1, 1, 3, 17, 150, 1803, 27364, 501015, 10736010, 263461265, 7283725704, 223967628066, 7581128184175, 280103206674480, 11216492736563655, 483875783716549277, 22371631078155742764, 1103548801569848115255, 57849356643299101021960, 3211439288584038922502820
Offset: 0

Views

Author

Gus Wiseman, Jan 04 2024

Keywords

Comments

It doesn't matter for this sequence whether we use loops such as {x,x} or half-loops such as {x}.

Examples

			The a(0) = 1 through a(3) = 17 set-systems:
  {}  {{1}}  {{1},{2}}    {{1},{2},{3}}
             {{1},{1,2}}  {{1},{2},{1,3}}
             {{2},{1,2}}  {{1},{2},{2,3}}
                          {{1},{3},{1,2}}
                          {{1},{3},{2,3}}
                          {{2},{3},{1,2}}
                          {{2},{3},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1},{1,3},{2,3}}
                          {{2},{1,2},{1,3}}
                          {{2},{1,2},{2,3}}
                          {{2},{1,3},{2,3}}
                          {{3},{1,2},{1,3}}
                          {{3},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

This is the covering case of A014068.
Allowing edges of any positive size gives A054780, covering case of A136556.
Allowing any number of edges gives A322661, connected A062740.
The case of just pairs is A367863, covering case of A116508.
The unlabeled version is A368599.
The version contradicting strict AOC is A368730.
The connected case is A368951.
A000085 counts set partitions into singletons or pairs.
A006129 counts covering graphs, connected A001187.
A058891 counts set-systems, unlabeled A000612.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}], {n}],Union@@#==Range[n]&]],{n,0,5}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(binomial(k+1,2), n)) \\ Andrew Howroyd, Jan 06 2024

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(binomial(k+1,2), n). - Andrew Howroyd, Jan 06 2024

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jan 06 2024

A368927 Number of labeled loop-graphs covering a subset of {1..n} such that it is possible to choose a different vertex from each edge.

Original entry on oeis.org

1, 2, 7, 39, 314, 3374, 45630, 744917, 14245978, 312182262, 7708544246, 211688132465, 6397720048692, 210975024924386, 7537162523676076, 289952739051570639, 11949100971787370300, 525142845422124145682, 24515591201199758681892, 1211486045654016217202663
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2024

Keywords

Comments

These are loop-graphs where every connected component has a number of edges less than or equal to the number of vertices. Also loop-graphs with at most one cycle (unicyclic) in each connected component.

Examples

			The a(0) = 1 through a(2) = 7 loop-graphs (loops shown as singletons):
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1,2}}
             {{1},{2}}
             {{1},{1,2}}
             {{2},{1,2}}
		

Crossrefs

Without the choice condition we have A006125.
The case of a unique choice is A088957, unlabeled A087803.
The case without loops is A133686, complement A367867, covering A367869.
For exactly n edges and no loops we have A137916, unlabeled A137917.
For exactly n edges we have A333331 (maybe), complement A368596.
For edges of any positive size we have A367902, complement A367903.
The covering case is A369140, complement A369142.
The complement is counted by A369141.
The complement for n edges and no loops is A369143, covering A369144.
The unlabeled version is A369145, complement A369146.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006129 counts covering graphs, unlabeled A002494.
A322661 counts labeled covering loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]], Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]],{n,0,5}]
  • PARI
    seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(exp(3*t/2 - 3*t^2/4)/sqrt(1-t) ))} \\ Andrew Howroyd, Feb 02 2024

Formula

Binomial transform of A369140.
Exponential transform of A369197 with A369197(1) = 2.
E.g.f.: exp(3*T(x)/2 - 3*T(x)^2/4)/sqrt(1-T(x)), where T(x) is the e.g.f. of A000169. - Andrew Howroyd, Feb 02 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 02 2024

A369141 Number of labeled loop-graphs covering a subset of {1..n} such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 1, 25, 710, 29394, 2051522, 267690539, 68705230758, 35184059906570, 36028789310419722, 73786976083150073999, 302231454897259573627852, 2475880078570549574773324062, 40564819207303333310731978895956, 1329227995784915872613854321228773937
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2024

Keywords

Comments

Also labeled loop-graphs having at least one connected component containing more edges than vertices.

Examples

			The a(0) = 0 through a(3) = 25 loop-graphs (loops shown as singletons):
  .  .  {{1},{2},{1,2}}  {{1},{2},{1,2}}
                         {{1},{3},{1,3}}
                         {{2},{3},{2,3}}
                         {{1},{2},{3},{1,2}}
                         {{1},{2},{3},{1,3}}
                         {{1},{2},{3},{2,3}}
                         {{1},{2},{1,2},{1,3}}
                         {{1},{2},{1,2},{2,3}}
                         {{1},{2},{1,3},{2,3}}
                         {{1},{3},{1,2},{1,3}}
                         {{1},{3},{1,2},{2,3}}
                         {{1},{3},{1,3},{2,3}}
                         {{2},{3},{1,2},{1,3}}
                         {{2},{3},{1,2},{2,3}}
                         {{2},{3},{1,3},{2,3}}
                         {{1},{1,2},{1,3},{2,3}}
                         {{2},{1,2},{1,3},{2,3}}
                         {{3},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3}}
                         {{1},{2},{3},{1,2},{2,3}}
                         {{1},{2},{3},{1,3},{2,3}}
                         {{1},{2},{1,2},{1,3},{2,3}}
                         {{1},{3},{1,2},{1,3},{2,3}}
                         {{2},{3},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Without the choice condition we have A006125, unlabeled A000088.
The case of a unique choice is A088957, unlabeled A087803.
The case without loops is A367867, covering A367868.
For edges of any positive size we have A367903, complement A367902.
For exactly n edges we have A368596, complement A333331 (maybe).
The complement is counted by A368927, covering A369140.
The covering case is A369142.
For n edges and no loops we have A369143, covering A369144.
The unlabeled version is A369146 (covering A369147), complement A369145.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A133686 counts choosable graphs, covering A367869.
A322661 counts labeled covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n], {1,2}]],Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]

Formula

Binomial transform of A369142.
a(n) = A006125(n + 1) - A368927(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(6) onwards from Andrew Howroyd, Feb 02 2024

A333331 Number of integer points in the convex hull in R^n of parking functions of length n.

Original entry on oeis.org

1, 3, 17, 144, 1623, 22804, 383415, 7501422
Offset: 1

Views

Author

Richard Stanley, Mar 15 2020

Keywords

Comments

It is observed by Gus Wiseman in A368596 and A368730 that this sequence appears to be the complement of those sequences. If this is the case, then a(n) is the number of labeled graphs with loops allowed in which each connected component has an equal number of vertices and edges and the conjectured formula holds. Terms for n >= 9 are expected to be 167341283, 4191140394, 116425416531, ... - Andrew Howroyd, Jan 10 2024
From Gus Wiseman, Mar 22 2024: (Start)
An equivalent conjecture is that a(n) is the number of loop-graphs with n vertices and n edges such that it is possible to choose a different vertex from each edge. I call these graphs choosable. For example, the a(3) = 17 choosable loop-graphs are the following (loops shown as singletons):
{{1},{2},{3}} {{1},{2},{1,3}} {{1},{1,2},{1,3}} {{1,2},{1,3},{2,3}}
{{1},{2},{2,3}} {{1},{1,2},{2,3}}
{{1},{3},{1,2}} {{1},{1,3},{2,3}}
{{1},{3},{2,3}} {{2},{1,2},{1,3}}
{{2},{3},{1,2}} {{2},{1,2},{2,3}}
{{2},{3},{1,3}} {{2},{1,3},{2,3}}
{{3},{1,2},{1,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
(End)

Examples

			For n=2 the parking functions are (1,1), (1,2), (2,1). They are the only integer points in their convex hull. For n=3, in addition to the 16 parking functions, there is the additional point (2,2,2).
		

References

  • R. P. Stanley (Proposer), Problem 12191, Amer. Math. Monthly, 127:6 (2020), 563.

Crossrefs

All of the following relative references pertain to the conjecture:
The case of unique choice A000272.
The version without the choice condition is A014068, covering A368597.
The case of just pairs A137916.
For any number of edges of any positive size we have A367902.
The complement A368596, covering A368730.
Allowing edges of any positive size gives A368601, complement A368600.
Counting by singletons gives A368924.
For any number of edges we have A368927, complement A369141.
The connected case is A368951.
The unlabeled version is A368984, complement A368835.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.

Formula

Conjectured e.g.f.: exp(-log(1-T(x))/2 + T(x)/2 - T(x)^2/4) where T(x) = -LambertW(-x) is the e.g.f. of A000169. - Andrew Howroyd, Jan 10 2024

A368596 Number of n-element sets of singletons or pairs of distinct elements of {1..n}, or loop graphs with n edges, such that it is not possible to choose a different element from each.

Original entry on oeis.org

0, 0, 0, 3, 66, 1380, 31460, 800625, 22758918, 718821852, 25057509036, 957657379437, 39878893266795, 1799220308202603, 87502582432459584, 4566246347310609247, 254625879822078742956, 15115640124974801925030, 952050565540607423524658, 63425827673509972464868323
Offset: 0

Views

Author

Gus Wiseman, Jan 04 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(3) = 3 set-systems:
  {{1},{2},{1,2}}
  {{1},{3},{1,3}}
  {{2},{3},{2,3}}
		

Crossrefs

The version without the choice condition is A014068, covering A368597.
The complement appears to be A333331.
For covering pairs we have A367868.
Allowing edges of any positive size gives A368600, any length A367903.
The covering case is A368730.
The unlabeled version is A368835.
A000085 counts set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.
A322661 counts covering half-loop-graphs, connected A062740.
A369141 counts non-choosable loop-graphs, covering A369142.
A369146 counts unlabeled non-choosable loop-graphs, covering A369147.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}], {n}],Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jan 10 2024

A004102 Number of signed graphs with n nodes. Also number of 2-multigraphs on n nodes.

Original entry on oeis.org

1, 1, 3, 10, 66, 792, 25506, 2302938, 591901884, 420784762014, 819833163057369, 4382639993148435207, 64588133532185722290294, 2638572375815762804156666529, 300400208094064113266621946833097, 95776892467035669509813163910815022152
Offset: 0

Views

Author

Keywords

Comments

A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).

References

  • F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of A063841.
Cf. A053465.

Programs

  • Mathematica
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i-1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2], {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    Array[a, 16, 0] (* Jean-François Alcover, Aug 17 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 25 2018
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A004102(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024

Formula

Euler transform of A053465. - Andrew Howroyd, Sep 25 2018

Extensions

More terms from Vladeta Jovovic, Jan 06 2000
a(0)=1 prepended and a(15) added by Andrew Howroyd, Sep 25 2018
Previous Showing 11-20 of 81 results. Next