cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 189 results. Next

A103923 Triangle of partitions of n with parts of sizes 1,2,...,m, each of two different kinds, m>=1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 4, 2, 1, 5, 7, 5, 2, 1, 7, 12, 9, 5, 2, 1, 11, 19, 17, 10, 5, 2, 1, 15, 30, 28, 19, 10, 5, 2, 1, 22, 45, 47, 33, 20, 10, 5, 2, 1, 30, 67, 73, 57, 35, 20, 10, 5, 2, 1, 42, 97, 114, 92, 62, 36, 20, 10, 5, 2, 1, 56, 139, 170, 147, 102, 64, 36, 20, 10, 5, 2, 1, 77, 195
Offset: 0

Views

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

The corresponding Fine-Riordan triangle is A008951.
This is the array p_2(n,m) of Gupta et al. written as a triangle. p_2(n,m) is defined on p. x of this reference as the number of partitions of n into parts consisting of two varieties of each of the integers 1 to m and one variety of each larger integer. Therefore a(n,m) gives these numbers for the partitions of n-m.
a(n,m)= sum over partitions of n+t(m)-m of binomial(q(partition),m), with t(m):=A000217(m) and q the number of distinct parts of a given partition. m>=0.
a(n,m)= number of partitions of 2*n-m with exactly m odd parts.
a(n,m)= sum over partitions of n+t(m)-m of product(k[j],j=1..m), with t(m):=A000217(m) and k[j]=number of parts of size j (exponent of j in a given partition of n), if m>=1. If m=0 then a(n,0)=p(n):=A000041(n) (number of partitions of n). 0 is counted as a part for n=0 and only for this n.

Examples

			Triangle starts:
[1];
[1,1];
[2,2,1];
[3,4,2,1];
[5,7,5,2,1];
...
a(4,2)=5 from the partitions of 4-2=2 with two varieties of parts 1 and of 2, namely (2),(2'),(1^2),(1'^2) and (1,1').
a(4,2)=5 from the partitions of 4+t(2)-2=5 which have products of the exponents of parts 1 and 2: 0*0,1*0,0*1,2*1,1*2,5*0 and sum to 4.
a(4,2)=5 from the partitions of 4+t(2)-2=5 which have number of distinct parts (q values) 1,2,2,2,2,2,1. The corresponding binomial(q,2) values are 0,1,1,1,1,0 and sum to 4.
a(4,2)=5 from the partitions of 2*4-2=6 with exactly two odd parts, namely (1,5), (3^2), (1^2,4), (1,2,3) and (1^2,2^2), which are 5 in number.
		

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), pp. 90-121.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.

Crossrefs

The column sequences (without leading 0's) are, for m=0..10: A000041, A000070, A000097, A000098, A000710, A103924-A103929.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*
          `if`(d<=k, 2, 1), d=divisors(j)) *b(n-j, k), j=1..n)/n)
        end:
    A:= (n, k)-> b(n, k) -`if`(k=0, 0, b(n, k-1)):
    seq(seq(A(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Sep 14 2014
  • Mathematica
    a[n_, 0] := a[n, 0] = PartitionsP[n]; a[n_, m_] /; n= m >= 0 := a[n, m] = a[n-1, m-1] + a[n-m, m]; Table[a[n, m], {n, 0, 14}, {m, 0, n}] // Flatten (* Jean-François Alcover, Dec 09 2014 *)
    Flatten@Table[Length@IntegerPartitions[n-m, All, Range@n~Join~Range@m],  {n, 0, 12}, {m, 0, n}] (* Robert Price, Jul 29 2020 *)

Formula

a(n, m) = a(n-1, m-1) + a(n-m, m), n>=m>=0, with a(n, 0)= A000041(n) (partition numbers), a(n, m)=0 if n
a(n, m) = sum(a(n-1-j*m, m-1), j=0..floor((n-m)/m)), m>=1, input a(n, 0)= A000041(n).
G.f. column m: product(1/(1-x^j), j=1..m)*P(x), with P(x)= product(1/(1-x^j), j=1..infty), the o.g.f. for the partition numbers A000041.
G.f. column m>=1: (product(1/(1-x^k), k=1..m)^2)*product(1/(1-x^j), j=(m+1)..infty). For m=0 put the first product equal to 1.

A300060 Number of domino tilings of the diagram of the integer partition with Heinz number n.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 3, 0, 3, 1, 1, 0, 0, 0, 0, 1, 0, 2, 1, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 1, 5, 0, 0, 1, 1, 0, 3, 0, 2, 0, 0, 0, 1, 1, 3, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 4, 1, 0, 0, 1, 0, 5, 1, 0, 2, 3, 0, 2, 1, 1, 1, 5, 0, 0, 1, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0
Offset: 1

Author

Gus Wiseman, Feb 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Programs

  • Maple
    h:= proc(l, f) option remember; local k; if min(l[])>0 then
         `if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f)))
        else for k from nops(l) while l[k]>0 by -1 do od;
            `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
            `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
          fi
        end:
    g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
            `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
    a:= n-> g(sort(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`)):
    seq(a(n), n=1..120);  # Alois P. Heinz, May 22 2018
  • Mathematica
    h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[Map[Function[x, x-1], l[[Range @ f[[1]]]]], ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]] > 0, k-- ]; If[Length[f] > 0 && f[[1]] >= k, h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k-1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]];
    g[l_] := If[Sum[If[OddQ @ l[[i]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, l[[1]]], ReplacePart[l, 1 -> Nothing]]], 0];
    a[n_] := g[Reverse @ Sort[ Flatten[ Map[ Function[i, Table[PrimePi[i[[1]]], i[[2]]]], FactorInteger[n]]]]];
    Array[a, 120] (* Jean-François Alcover, May 28 2018, after Alois P. Heinz *)

A357486 Heinz numbers of integer partitions with the same length as alternating sum.

Original entry on oeis.org

1, 2, 10, 20, 21, 42, 45, 55, 88, 91, 105, 110, 125, 156, 176, 182, 187, 198, 231, 245, 247, 312, 340, 351, 374, 390, 391, 396, 429, 494, 532, 544, 550, 551, 605, 663, 680, 702, 713, 714, 765, 780, 782, 845, 891, 910, 912, 969, 975, 1012, 1064, 1073, 1078
Offset: 1

Author

Gus Wiseman, Oct 01 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The terms together with their prime indices begin:
     1: {}
     2: {1}
    10: {1,3}
    20: {1,1,3}
    21: {2,4}
    42: {1,2,4}
    45: {2,2,3}
    55: {3,5}
    88: {1,1,1,5}
    91: {4,6}
   105: {2,3,4}
   110: {1,3,5}
   125: {3,3,3}
   156: {1,1,2,6}
   176: {1,1,1,1,5}
		

Crossrefs

For product instead of length we have new, counted by A004526.
The version for compositions is A357184, counted by A357182.
For absolute value we have A357486, counted by A357487.
These partitions are counted by A357189.
A000041 counts partitions, strict A000009.
A000712 up to 0's counts partitions, sum = twice alt sum, rank A349159.
A001055 counts partitions with product equal to sum, ranked by A301987.
A006330 up to 0's counts partitions, sum = twice rev-alt sum, rank A349160.
A025047 counts alternating compositions.
A357136 counts compositions by alternating sum.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[100],PrimeOmega[#]==ats[Reverse[primeMS[#]]]&]

A000711 Number of partitions of n, with three kinds of 1,2,3 and 4 and two kinds of 5,6,7,...

Original entry on oeis.org

1, 3, 9, 22, 51, 107, 217, 416, 775, 1393, 2446, 4185, 7028, 11569, 18749, 29908, 47083, 73157, 112396, 170783, 256972, 383003, 565961, 829410, 1206282, 1741592, 2497425, 3557957, 5037936, 7091711, 9927583, 13823626, 19151731, 26404879, 36236988, 49509149
Offset: 0

Keywords

Comments

Convolution of A000712 and A001400. - Vaclav Kotesovec, Aug 18 2015

Examples

			a(2)=9 because we have 2, 2', 2", 1+1, 1'+1', 1"+1", 1+1', 1+1", 1'+1".
		

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add (add (d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> `if`(n<5,3,2)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    nn=31;CoefficientList[Series[1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/Product[(1-x^i)^2,{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 28 2013 *)

Formula

EULER transform of 3, 3, 3, 3, 2, 2, 2, 2, ...
G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*Product_{k>=1} (1 - x^k)^2).
a(n) ~ exp(2*Pi*sqrt(n/3)) * 3^(1/4) * n^(3/4) / (32*Pi^4). - Vaclav Kotesovec, Aug 18 2015

Extensions

Extended with formula from Christian G. Bower, Apr 15 1998
Edited by Emeric Deutsch, Mar 22 2005

A103924 Number of partitions of n into parts but with two kinds of parts of sizes 1,2,3,4 and 5.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 64, 107, 177, 282, 443, 678, 1026, 1522, 2234, 3231, 4628, 6550, 9193, 12774, 17619, 24098, 32740, 44161, 59213, 78894, 104553, 137787, 180702, 235806, 306354, 396226, 510392, 654787, 836911, 1065734, 1352475, 1710535, 2156536, 2710318
Offset: 0

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

See A103923 for other combinatorial interpretations of a(n).
Convolution of A001401 and A000041. - Vaclav Kotesovec, Aug 28 2015
Also the sum of binomial (D(p), 5) over partitions p of n+15, where D(p) is the number of different part sizes in p. - Emily Anible, Jun 09 2018

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 90.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.

Crossrefs

Sixth column (m=5) of Fine-Riordan triangle A008951 and of triangle A103923, i.e. the p_2(n, m) array of the Gupta et al. reference.
Cf. A000712 (all parts of two kinds).

Programs

  • Maple
    with(numtheory): a:= proc(n) a(n):=`if`(n=0, 1, add(add(d*`if`(d<6, 2, 1), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Sep 14 2014
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[Sum[d*If[d<6, 2, 1], {d, Divisors[j]}] * a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 28 2015, after Alois P. Heinz *)
    nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 5}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)
    Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@5],  {n,0,39}] (* Robert Price, Jul 29 2020 *)
    T[n_, 0] := PartitionsP[n];
    T[n_, m_] /; (n >= m(m+1)/2) := T[n, m] = T[n-m, m-1] + T[n-m, m];
    T[, ] = 0;
    a[n_] := T[n+15, 5];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)

Formula

G.f.: (product(1/(1-x^k), k=1..5)^2)*product(1/(1-x^j), j=6..infty).
a(n) = sum(A000710(n-5*j), j=0..floor(n/5)), n>=0.
a(n) ~ 3*n^(3/2) * exp(Pi*sqrt(2*n/3)) / (20*sqrt(2)*Pi^5). - Vaclav Kotesovec, Aug 28 2015

A193427 G.f.: Product_{k>=1} 1/(1-x^k)^(8*k).

Original entry on oeis.org

1, 8, 52, 272, 1266, 5344, 20992, 77584, 272727, 917936, 2975492, 9328736, 28391410, 84122688, 243265848, 688008048, 1906476351, 5184024112, 13851270944, 36409640400, 94255399886, 240529147072, 605574003464, 1505340071744
Offset: 0

Author

Martin Y. Veillette, Jul 28 2011

Keywords

Comments

Previous name was: Number of plane partitions of n into parts of 8 kinds.
In general, if g.f. = Product_{k>=1} 1/(1-x^k)^(m*k) and m > 0, then a(n) ~ 2^(m/36 - 1/3) * exp(m/12 + 3 * 2^(-2/3) * m^(1/3) * zeta(3)^(1/3) * n^(2/3)) * (m*zeta(3))^(m/36 + 1/6) / (A^m * sqrt(3*Pi) * n^(m/36 + 2/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015

Crossrefs

Cf. A000219 (m=1), A161870 (m=2), A255610 (m=3), A255611 (m=4), A255612 (m=5), A255613 (m=6), A255614 (m=7).
Column k=8 of A255961.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, 8*add(
          a(n-j)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 11 2015
  • Mathematica
    ANS = Block[{kmax = 50},
      Coefficient[
       Series[Product[1/(1 - x^k)^(8 k), {k, 1, kmax}], {x, 0, kmax}], x,
       Range[0, kmax]]]
    (* Second program: *)
    a[n_] := a[n] = If[n==0, 1, 8*Sum[a[n-j]*DivisorSigma[2, j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 07 2017, after Alois P. Heinz *)
  • PARI
    Vec(prod(k=1,100\2,(1-x^k)^(-8*k),1+O(x^101))) \\ Charles R Greathouse IV, Aug 09 2011

Formula

G.f.: Product_{k>=1} (1-x^k)^(-8*k).
a(n) ~ 2^(19/18) * zeta(3)^(7/18) * exp(2/3 + 3 * 2^(1/3) * zeta(3)^(1/3) * n^(2/3)) / (A^8 * sqrt(3*Pi) * n^(8/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Feb 28 2015
G.f.: exp(8*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 29 2018
Euler transform of 8*k. - Georg Fischer, Aug 15 2020

Extensions

New name from Vaclav Kotesovec, Mar 12 2015

A365662 Number of ordered pairs of disjoint strict integer partitions of n.

Original entry on oeis.org

1, 0, 0, 2, 2, 6, 8, 14, 18, 32, 42, 66, 92, 136, 190, 280, 374, 532, 744, 1014, 1366, 1896, 2512, 3384, 4526, 6006, 7910, 10496, 13648, 17842, 23338, 30116, 38826, 50256, 64298, 82258, 105156, 133480, 169392, 214778, 270620, 340554, 428772, 536302, 670522
Offset: 0

Author

Gus Wiseman, Sep 19 2023

Keywords

Comments

Also the number of ways to first choose a strict partition of 2n, then a subset of it summing to n.

Examples

			The a(0) = 1 through a(7) = 14 pairs:
  ()()  .  .  (21)(3)  (31)(4)  (32)(5)   (42)(6)   (43)(7)
              (3)(21)  (4)(31)  (41)(5)   (51)(6)   (52)(7)
                                (5)(32)   (6)(42)   (61)(7)
                                (5)(41)   (6)(51)   (7)(43)
                                (32)(41)  (321)(6)  (7)(52)
                                (41)(32)  (42)(51)  (7)(61)
                                          (51)(42)  (421)(7)
                                          (6)(321)  (43)(52)
                                                    (43)(61)
                                                    (52)(43)
                                                    (52)(61)
                                                    (61)(43)
                                                    (61)(52)
                                                    (7)(421)
		

Crossrefs

For subsets instead of partitions we have A000244, non-disjoint A000302.
If the partitions can have different sums we get A032302.
The non-strict version is A054440, non-disjoint A001255.
The unordered version is A108796, non-strict A260669.
A000041 counts integer partitions, strict A000009.
A000124 counts distinct possible sums of subsets of {1..n}.
A000712 counts distinct submultisets of partitions.
A002219 and A237258 count partitions of 2n including a partition of n.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[Tuples[Select[IntegerPartitions[n], UnsameQ@@#&],2], Intersection@@#=={}&]], {n,0,15}]
    Table[SeriesCoefficient[Product[(1 + x^k + y^k), {k, 1, n}], {x, 0, n}, {y, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Apr 24 2025 *)

Formula

a(n) = 2*A108796(n) for n > 1.
a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k + y^k). - Ilya Gutkovskiy, Apr 24 2025

A300056 Number of normal standard domino tableaux whose shape is the integer partition with Heinz number n.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 3, 1, 0, 0, 3, 0, 3, 2, 1, 0, 0, 0, 0, 1, 0, 3, 1, 0, 4, 2, 0, 0, 1, 0, 0, 1, 0, 1, 6, 0, 0, 3, 1, 0, 4, 0, 5, 0, 0, 0, 1, 1, 8, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 6, 4, 0, 0, 1, 0, 6, 1, 0, 6, 5, 0, 6, 3, 1, 2, 10, 0, 0, 1, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0
Offset: 1

Author

Gus Wiseman, Feb 23 2018

Keywords

Comments

A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. A standard domino tableau is a generalized Young tableau in which all rows and columns are weakly increasing and all regions are dominos. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(75) = 6 tableaux:
1 2 4   1 2 3   1 2 2   1 1 4   1 1 4   1 1 3
1 2 4   1 2 3   1 3 3   2 3 4   2 2 4   2 2 3
3 3     4 4     4 4     2 3     3 3     4 4
		

A301856 Number of subset-products (greater than 1) of factorizations of n into factors greater than 1.

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 1, 7, 3, 4, 1, 12, 1, 4, 4, 14, 1, 12, 1, 12, 4, 4, 1, 29, 3, 4, 7, 12, 1, 17, 1, 27, 4, 4, 4, 36, 1, 4, 4, 29, 1, 17, 1, 12, 12, 4, 1, 62, 3, 12, 4, 12, 1, 29, 4, 29, 4, 4, 1, 53, 1, 4, 12, 47, 4, 17, 1, 12, 4, 17, 1, 90, 1, 4, 12, 12, 4, 17
Offset: 1

Author

Gus Wiseman, Mar 27 2018

Keywords

Comments

For a finite multiset p of positive integers greater than 1 with product n, a pair (t > 1, p) is defined to be a subset-product if there exists a nonempty submultiset of p with product t.

Examples

			The a(12) = 12 subset-products:
12<=(2*2*3), 6<=(2*2*3), 4<=(2*2*3), 3<=(2*2*3), 2<=(2*2*3),
12<=(2*6),   6<=(2*6),   4<=(3*4),   3<=(3*4),   2<=(2*6),
12<=(3*4),
12<=(12).
The a(16) = 14 subset-products:
16<=(16),
16<=(4*4),
16<=(2*8),     8<=(2*8),     4<=(4*4),     2<=(2*8),
16<=(2*2*4),   8<=(2*2*4),   4<=(2*2*4),   2<=(2*2*4),
16<=(2*2*2*2), 8<=(2*2*2*2), 4<=(2*2*2*2), 2<=(2*2*2*2).
		

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[Union[Times@@@Rest[Subsets[f]]]],{f,facs[n]}],{n,100}]

A301829 Number of ways to choose a nonempty submultiset of a factorization of n into factors greater than one.

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 1, 7, 3, 4, 1, 12, 1, 4, 4, 15, 1, 12, 1, 12, 4, 4, 1, 29, 3, 4, 7, 12, 1, 17, 1, 29, 4, 4, 4, 37, 1, 4, 4, 29, 1, 17, 1, 12, 12, 4, 1, 64, 3, 12, 4, 12, 1, 29, 4, 29, 4, 4, 1, 53, 1, 4, 12, 54, 4, 17, 1, 12, 4, 17, 1, 92, 1, 4, 12, 12, 4, 17
Offset: 1

Author

Gus Wiseman, Mar 27 2018

Keywords

Examples

			The a(12) = 12 submultisets ("<" means subset or equal):
(2)<(2*2*3), (3)<(2*2*3), (2*2)<(2*2*3), (2*3)<(2*2*3), (2*2*3)<(2*2*3),
(2)<(2*6), (6)<(2*6), (2*6)<(2*6),
(3)<(3*4), (4)<(3*4), (3*4)<(3*4),
(12)<(12).
		

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[facs[d]]*Length[facs[n/d]],{d,Rest[Divisors[n]]}],{n,100}]

Formula

a(n) = Sum_{d|n, d>1} f(d) * f(n/d) where f(n) = A001055(n) is the number of factorizations of n into factors greater than 1.
Previous Showing 51-60 of 189 results. Next