A103923 Triangle of partitions of n with parts of sizes 1,2,...,m, each of two different kinds, m>=1.
1, 1, 1, 2, 2, 1, 3, 4, 2, 1, 5, 7, 5, 2, 1, 7, 12, 9, 5, 2, 1, 11, 19, 17, 10, 5, 2, 1, 15, 30, 28, 19, 10, 5, 2, 1, 22, 45, 47, 33, 20, 10, 5, 2, 1, 30, 67, 73, 57, 35, 20, 10, 5, 2, 1, 42, 97, 114, 92, 62, 36, 20, 10, 5, 2, 1, 56, 139, 170, 147, 102, 64, 36, 20, 10, 5, 2, 1, 77, 195
Offset: 0
Examples
Triangle starts: [1]; [1,1]; [2,2,1]; [3,4,2,1]; [5,7,5,2,1]; ... a(4,2)=5 from the partitions of 4-2=2 with two varieties of parts 1 and of 2, namely (2),(2'),(1^2),(1'^2) and (1,1'). a(4,2)=5 from the partitions of 4+t(2)-2=5 which have products of the exponents of parts 1 and 2: 0*0,1*0,0*1,2*1,1*2,5*0 and sum to 4. a(4,2)=5 from the partitions of 4+t(2)-2=5 which have number of distinct parts (q values) 1,2,2,2,2,2,1. The corresponding binomial(q,2) values are 0,1,1,1,1,0 and sum to 4. a(4,2)=5 from the partitions of 2*4-2=6 with exactly two odd parts, namely (1,5), (3^2), (1^2,4), (1,2,3) and (1^2,2^2), which are 5 in number.
References
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), pp. 90-121.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- J. Huang, A. Senger, P. Wear, T. Wu, Partition statistics equidistributed with the number of hook difference one cells, 2013. See Remark 5.7. - _N. J. A. Sloane_, May 20 2014
- W. Lang: First 16 rows.
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n, k) option remember; `if`(n=0, 1, add(add(d* `if`(d<=k, 2, 1), d=divisors(j)) *b(n-j, k), j=1..n)/n) end: A:= (n, k)-> b(n, k) -`if`(k=0, 0, b(n, k-1)): seq(seq(A(n, k), k=0..n), n=0..14); # Alois P. Heinz, Sep 14 2014
-
Mathematica
a[n_, 0] := a[n, 0] = PartitionsP[n]; a[n_, m_] /; n
= m >= 0 := a[n, m] = a[n-1, m-1] + a[n-m, m]; Table[a[n, m], {n, 0, 14}, {m, 0, n}] // Flatten (* Jean-François Alcover, Dec 09 2014 *) Flatten@Table[Length@IntegerPartitions[n-m, All, Range@n~Join~Range@m], {n, 0, 12}, {m, 0, n}] (* Robert Price, Jul 29 2020 *)
Formula
a(n, m) = a(n-1, m-1) + a(n-m, m), n>=m>=0, with a(n, 0)= A000041(n) (partition numbers), a(n, m)=0 if n
a(n, m) = sum(a(n-1-j*m, m-1), j=0..floor((n-m)/m)), m>=1, input a(n, 0)= A000041(n).
G.f. column m: product(1/(1-x^j), j=1..m)*P(x), with P(x)= product(1/(1-x^j), j=1..infty), the o.g.f. for the partition numbers A000041.
G.f. column m>=1: (product(1/(1-x^k), k=1..m)^2)*product(1/(1-x^j), j=(m+1)..infty). For m=0 put the first product equal to 1.
A300060 Number of domino tilings of the diagram of the integer partition with Heinz number n.
1, 0, 1, 1, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 3, 0, 3, 1, 1, 0, 0, 0, 0, 1, 0, 2, 1, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 1, 5, 0, 0, 1, 1, 0, 3, 0, 2, 0, 0, 0, 1, 1, 3, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 4, 1, 0, 0, 1, 0, 5, 1, 0, 2, 3, 0, 2, 1, 1, 1, 5, 0, 0, 1, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0
Offset: 1
Keywords
Comments
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..100000
- Wikipedia, Domino tiling
- Gus Wiseman, The a(91) = 5 domino tilings of (6,4).
Crossrefs
Programs
-
Maple
h:= proc(l, f) option remember; local k; if min(l[])>0 then `if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f))) else for k from nops(l) while l[k]>0 by -1 do od; `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+ `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0) fi end: g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0, `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0): a:= n-> g(sort(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`)): seq(a(n), n=1..120); # Alois P. Heinz, May 22 2018
-
Mathematica
h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[Map[Function[x, x-1], l[[Range @ f[[1]]]]], ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]] > 0, k-- ]; If[Length[f] > 0 && f[[1]] >= k, h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k-1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]]; g[l_] := If[Sum[If[OddQ @ l[[i]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, l[[1]]], ReplacePart[l, 1 -> Nothing]]], 0]; a[n_] := g[Reverse @ Sort[ Flatten[ Map[ Function[i, Table[PrimePi[i[[1]]], i[[2]]]], FactorInteger[n]]]]]; Array[a, 120] (* Jean-François Alcover, May 28 2018, after Alois P. Heinz *)
A357486 Heinz numbers of integer partitions with the same length as alternating sum.
1, 2, 10, 20, 21, 42, 45, 55, 88, 91, 105, 110, 125, 156, 176, 182, 187, 198, 231, 245, 247, 312, 340, 351, 374, 390, 391, 396, 429, 494, 532, 544, 550, 551, 605, 663, 680, 702, 713, 714, 765, 780, 782, 845, 891, 910, 912, 969, 975, 1012, 1064, 1073, 1078
Offset: 1
Keywords
Comments
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 10: {1,3} 20: {1,1,3} 21: {2,4} 42: {1,2,4} 45: {2,2,3} 55: {3,5} 88: {1,1,1,5} 91: {4,6} 105: {2,3,4} 110: {1,3,5} 125: {3,3,3} 156: {1,1,2,6} 176: {1,1,1,1,5}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; Select[Range[100],PrimeOmega[#]==ats[Reverse[primeMS[#]]]&]
A000711 Number of partitions of n, with three kinds of 1,2,3 and 4 and two kinds of 5,6,7,...
1, 3, 9, 22, 51, 107, 217, 416, 775, 1393, 2446, 4185, 7028, 11569, 18749, 29908, 47083, 73157, 112396, 170783, 256972, 383003, 565961, 829410, 1206282, 1741592, 2497425, 3557957, 5037936, 7091711, 9927583, 13823626, 19151731, 26404879, 36236988, 49509149
Offset: 0
Keywords
Comments
Examples
a(2)=9 because we have 2, 2', 2", 1+1, 1'+1', 1"+1", 1+1', 1+1", 1'+1".
References
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- M. A. Harrison, On the number of classes of binary matrices, IEEE Transactions on Computers, C-22.12 (1973), 1048-1052. (Annotated scanned copy)
- N. J. A. Sloane, Transforms
Programs
-
Maple
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add (add (d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> `if`(n<5,3,2)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
-
Mathematica
nn=31;CoefficientList[Series[1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/Product[(1-x^i)^2,{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 28 2013 *)
Formula
EULER transform of 3, 3, 3, 3, 2, 2, 2, 2, ...
G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*Product_{k>=1} (1 - x^k)^2).
a(n) ~ exp(2*Pi*sqrt(n/3)) * 3^(1/4) * n^(3/4) / (32*Pi^4). - Vaclav Kotesovec, Aug 18 2015
Extensions
Extended with formula from Christian G. Bower, Apr 15 1998
Edited by Emeric Deutsch, Mar 22 2005
A103924 Number of partitions of n into parts but with two kinds of parts of sizes 1,2,3,4 and 5.
1, 2, 5, 10, 20, 36, 64, 107, 177, 282, 443, 678, 1026, 1522, 2234, 3231, 4628, 6550, 9193, 12774, 17619, 24098, 32740, 44161, 59213, 78894, 104553, 137787, 180702, 235806, 306354, 396226, 510392, 654787, 836911, 1065734, 1352475, 1710535, 2156536, 2710318
Offset: 0
Comments
See A103923 for other combinatorial interpretations of a(n).
Also the sum of binomial (D(p), 5) over partitions p of n+15, where D(p) is the number of different part sizes in p. - Emily Anible, Jun 09 2018
References
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 90.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
with(numtheory): a:= proc(n) a(n):=`if`(n=0, 1, add(add(d*`if`(d<6, 2, 1), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Sep 14 2014
-
Mathematica
a[n_] := a[n] = If[n==0, 1, Sum[Sum[d*If[d<6, 2, 1], {d, Divisors[j]}] * a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 28 2015, after Alois P. Heinz *) nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 5}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *) Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@5], {n,0,39}] (* Robert Price, Jul 29 2020 *) T[n_, 0] := PartitionsP[n]; T[n_, m_] /; (n >= m(m+1)/2) := T[n, m] = T[n-m, m-1] + T[n-m, m]; T[, ] = 0; a[n_] := T[n+15, 5]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)
Formula
G.f.: (product(1/(1-x^k), k=1..5)^2)*product(1/(1-x^j), j=6..infty).
a(n) = sum(A000710(n-5*j), j=0..floor(n/5)), n>=0.
a(n) ~ 3*n^(3/2) * exp(Pi*sqrt(2*n/3)) / (20*sqrt(2)*Pi^5). - Vaclav Kotesovec, Aug 28 2015
A193427 G.f.: Product_{k>=1} 1/(1-x^k)^(8*k).
1, 8, 52, 272, 1266, 5344, 20992, 77584, 272727, 917936, 2975492, 9328736, 28391410, 84122688, 243265848, 688008048, 1906476351, 5184024112, 13851270944, 36409640400, 94255399886, 240529147072, 605574003464, 1505340071744
Offset: 0
Keywords
Comments
Previous name was: Number of plane partitions of n into parts of 8 kinds.
In general, if g.f. = Product_{k>=1} 1/(1-x^k)^(m*k) and m > 0, then a(n) ~ 2^(m/36 - 1/3) * exp(m/12 + 3 * 2^(-2/3) * m^(1/3) * zeta(3)^(1/3) * n^(2/3)) * (m*zeta(3))^(m/36 + 1/6) / (A^m * sqrt(3*Pi) * n^(m/36 + 2/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 19.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, 8*add( a(n-j)*numtheory[sigma][2](j), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Mar 11 2015
-
Mathematica
ANS = Block[{kmax = 50}, Coefficient[ Series[Product[1/(1 - x^k)^(8 k), {k, 1, kmax}], {x, 0, kmax}], x, Range[0, kmax]]] (* Second program: *) a[n_] := a[n] = If[n==0, 1, 8*Sum[a[n-j]*DivisorSigma[2, j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 07 2017, after Alois P. Heinz *)
-
PARI
Vec(prod(k=1,100\2,(1-x^k)^(-8*k),1+O(x^101))) \\ Charles R Greathouse IV, Aug 09 2011
Formula
G.f.: Product_{k>=1} (1-x^k)^(-8*k).
a(n) ~ 2^(19/18) * zeta(3)^(7/18) * exp(2/3 + 3 * 2^(1/3) * zeta(3)^(1/3) * n^(2/3)) / (A^8 * sqrt(3*Pi) * n^(8/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Feb 28 2015
G.f.: exp(8*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 29 2018
Euler transform of 8*k. - Georg Fischer, Aug 15 2020
Extensions
New name from Vaclav Kotesovec, Mar 12 2015
A365662 Number of ordered pairs of disjoint strict integer partitions of n.
1, 0, 0, 2, 2, 6, 8, 14, 18, 32, 42, 66, 92, 136, 190, 280, 374, 532, 744, 1014, 1366, 1896, 2512, 3384, 4526, 6006, 7910, 10496, 13648, 17842, 23338, 30116, 38826, 50256, 64298, 82258, 105156, 133480, 169392, 214778, 270620, 340554, 428772, 536302, 670522
Offset: 0
Keywords
Comments
Also the number of ways to first choose a strict partition of 2n, then a subset of it summing to n.
Examples
The a(0) = 1 through a(7) = 14 pairs: ()() . . (21)(3) (31)(4) (32)(5) (42)(6) (43)(7) (3)(21) (4)(31) (41)(5) (51)(6) (52)(7) (5)(32) (6)(42) (61)(7) (5)(41) (6)(51) (7)(43) (32)(41) (321)(6) (7)(52) (41)(32) (42)(51) (7)(61) (51)(42) (421)(7) (6)(321) (43)(52) (43)(61) (52)(43) (52)(61) (61)(43) (61)(52) (7)(421)
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Tuples[Select[IntegerPartitions[n], UnsameQ@@#&],2], Intersection@@#=={}&]], {n,0,15}] Table[SeriesCoefficient[Product[(1 + x^k + y^k), {k, 1, n}], {x, 0, n}, {y, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Apr 24 2025 *)
Formula
a(n) = 2*A108796(n) for n > 1.
a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k + y^k). - Ilya Gutkovskiy, Apr 24 2025
A300056 Number of normal standard domino tableaux whose shape is the integer partition with Heinz number n.
1, 0, 1, 1, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 3, 1, 0, 0, 3, 0, 3, 2, 1, 0, 0, 0, 0, 1, 0, 3, 1, 0, 4, 2, 0, 0, 1, 0, 0, 1, 0, 1, 6, 0, 0, 3, 1, 0, 4, 0, 5, 0, 0, 0, 1, 1, 8, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 6, 4, 0, 0, 1, 0, 6, 1, 0, 6, 5, 0, 6, 3, 1, 2, 10, 0, 0, 1, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0
Offset: 1
Keywords
Comments
A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. A standard domino tableau is a generalized Young tableau in which all rows and columns are weakly increasing and all regions are dominos. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Examples
The a(75) = 6 tableaux: 1 2 4 1 2 3 1 2 2 1 1 4 1 1 4 1 1 3 1 2 4 1 2 3 1 3 3 2 3 4 2 2 4 2 2 3 3 3 4 4 4 4 2 3 3 3 4 4
A301856 Number of subset-products (greater than 1) of factorizations of n into factors greater than 1.
0, 1, 1, 3, 1, 4, 1, 7, 3, 4, 1, 12, 1, 4, 4, 14, 1, 12, 1, 12, 4, 4, 1, 29, 3, 4, 7, 12, 1, 17, 1, 27, 4, 4, 4, 36, 1, 4, 4, 29, 1, 17, 1, 12, 12, 4, 1, 62, 3, 12, 4, 12, 1, 29, 4, 29, 4, 4, 1, 53, 1, 4, 12, 47, 4, 17, 1, 12, 4, 17, 1, 90, 1, 4, 12, 12, 4, 17
Offset: 1
Keywords
Comments
For a finite multiset p of positive integers greater than 1 with product n, a pair (t > 1, p) is defined to be a subset-product if there exists a nonempty submultiset of p with product t.
Examples
The a(12) = 12 subset-products: 12<=(2*2*3), 6<=(2*2*3), 4<=(2*2*3), 3<=(2*2*3), 2<=(2*2*3), 12<=(2*6), 6<=(2*6), 4<=(3*4), 3<=(3*4), 2<=(2*6), 12<=(3*4), 12<=(12). The a(16) = 14 subset-products: 16<=(16), 16<=(4*4), 16<=(2*8), 8<=(2*8), 4<=(4*4), 2<=(2*8), 16<=(2*2*4), 8<=(2*2*4), 4<=(2*2*4), 2<=(2*2*4), 16<=(2*2*2*2), 8<=(2*2*2*2), 4<=(2*2*2*2), 2<=(2*2*2*2).
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Sum[Length[Union[Times@@@Rest[Subsets[f]]]],{f,facs[n]}],{n,100}]
A301829 Number of ways to choose a nonempty submultiset of a factorization of n into factors greater than one.
0, 1, 1, 3, 1, 4, 1, 7, 3, 4, 1, 12, 1, 4, 4, 15, 1, 12, 1, 12, 4, 4, 1, 29, 3, 4, 7, 12, 1, 17, 1, 29, 4, 4, 4, 37, 1, 4, 4, 29, 1, 17, 1, 12, 12, 4, 1, 64, 3, 12, 4, 12, 1, 29, 4, 29, 4, 4, 1, 53, 1, 4, 12, 54, 4, 17, 1, 12, 4, 17, 1, 92, 1, 4, 12, 12, 4, 17
Offset: 1
Keywords
Examples
The a(12) = 12 submultisets ("<" means subset or equal): (2)<(2*2*3), (3)<(2*2*3), (2*2)<(2*2*3), (2*3)<(2*2*3), (2*2*3)<(2*2*3), (2)<(2*6), (6)<(2*6), (2*6)<(2*6), (3)<(3*4), (4)<(3*4), (3*4)<(3*4), (12)<(12).
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Sum[Length[facs[d]]*Length[facs[n/d]],{d,Rest[Divisors[n]]}],{n,100}]
Formula
a(n) = Sum_{d|n, d>1} f(d) * f(n/d) where f(n) = A001055(n) is the number of factorizations of n into factors greater than 1.
Comments