cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A327235 Number of unlabeled simple graphs with n vertices whose edge-set is not connected.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 14, 49, 234, 1476, 15405, 307536, 12651788, 1044977929, 167207997404, 50838593828724, 29156171171238607, 31484900549777534887, 64064043979274771429379, 246064055301339083624989655, 1788069981480210465772374023323, 24641385885409824180500407923934750
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Examples

			The a(4) = 2 through a(6) = 14 edge-sets:
  {}       {}             {}
  {12,34}  {12,34}        {12,34}
           {12,35,45}     {12,34,56}
           {12,34,35,45}  {12,35,45}
                          {12,34,35,45}
                          {12,35,46,56}
                          {12,36,46,56}
                          {13,23,46,56}
                          {12,34,35,46,56}
                          {12,36,45,46,56}
                          {13,23,45,46,56}
                          {12,13,23,45,46,56}
                          {12,35,36,45,46,56}
                          {12,34,35,36,45,46,56}
		

Crossrefs

Unlabeled non-connected graphs are A000719.
Partial sums of A327075.
The labeled version is A327199.

Programs

  • Python
    from functools import lru_cache
    from itertools import combinations
    from fractions import Fraction
    from math import prod, gcd, factorial
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A327235(n):
        if n == 0: return 1
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        def a(n): return sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n if n else 1
        return 1+b(n)-sum(a(i) for i in range(1,n+1)) # Chai Wah Wu, Jul 03 2024

Formula

a(n) = 1 + A000088(n) - Sum_{i = 1..n} A001349(i).

Extensions

a(20)-a(21) from Chai Wah Wu, Jul 03 2024

A052444 Number of simple unlabeled n-node graphs of connectivity 3.

Original entry on oeis.org

0, 0, 0, 1, 2, 13, 111, 2004, 66410, 3902344, 388624106, 65142804740
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(n) = A006290(n) - A086216(n). - Andrew Howroyd, Sep 04 2019

Extensions

Name edited and a(8)-a(11) by Jens M. Schmidt, Feb 18 2019
a(3)-a(4) corrected by Andrew Howroyd, Aug 28 2019
a(12) from Sean A. Irvine, Nov 28 2021

A054590 Number of disconnected digraphs with n unlabeled nodes.

Original entry on oeis.org

0, 1, 3, 19, 244, 10101, 1562298, 885237542, 1795141933300, 13031553571814674, 341286507770733602176, 32523592049568306757117737, 11366810480400463340177768296746, 14669108426561606778443288692015619955, 70315685953531425166863071956073529852161120
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2000

Keywords

Crossrefs

The labeled case is A054593.

Programs

  • Python
    from functools import lru_cache
    from itertools import product
    from fractions import Fraction
    from math import prod, gcd, factorial
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A054590(n):
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 05 2024

Formula

a(n) = A000273(n) - A003085(n).

Extensions

Terms a(14) and beyond from Andrew Howroyd, Apr 18 2021

A139415 Number of preferential arrangements (or hierarchical orderings) on the disconnected graphs on n unlabeled nodes.

Original entry on oeis.org

0, 0, 2, 8, 40, 208, 1408, 12224, 157312, 3478528, 147761664, 12592434176, 2112188653568, 680441850810368, 415073848421801984, 476853486273606582272, 1030736815796444156755968, 4196432048875514376435007488, 32243698461915435195120257335296
Offset: 0

Views

Author

Thomas Wieder, Apr 20 2008

Keywords

Examples

			For n=3 we have A139415(3) = 8 because:
There A000719 (3)=2 disconnected graphs for n=3 unlabeled elements:
Three disconnected points
o o o
and
one point plus a two-point chain
o o-o.
The three disconnected points give us 011782(3) = 4 arrangements:
o o o,
-----
o
o o,
-----
o o
o,
-----
o
o
o.
The point plus the two-point chain provides us with 4 arrangements:
o o-o,
-----
o-o
o,
-----
o
o-o,
-----
o
|
o o.
This gives us 8 hierarchical orderings.
(See A136722 for the two connected graphs for n=3, these are the three-point chain and the triangle.)
		

Crossrefs

Programs

  • Python
    from functools import lru_cache
    from itertools import combinations
    from fractions import Fraction
    from math import prod, gcd, factorial
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A139415(n):
        if n == 0: return 0
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        return b(n)-sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n<Chai Wah Wu, Jul 03 2024

Formula

a(n) = A000719(n)*A011782(n). Also A000088(n) = A001349(n) + A000719(n) and therefore A000088(n)*A011782(n) = A001349(n)*A011782(n) + A000719(n)*A011782(n) = A136722(n) + a(n).

Extensions

Offset corrected and more terms from Alois P. Heinz, Apr 21 2012
Previous Showing 11-14 of 14 results.