cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A022579 Expansion of Product_{m>=1} (1+x^m)^14.

Original entry on oeis.org

1, 14, 105, 574, 2576, 10052, 35273, 113794, 342699, 974176, 2635955, 6833540, 17061345, 41197422, 96544003, 220212384, 490104727, 1066552228, 2273590095, 4755188704, 9771319068, 19751596934, 39317784863, 77150246040, 149357609184, 285497384004, 539227765104, 1006978117880
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=14 of A286335. Cf. A000707, A023003.

Programs

  • Magma
    Coefficients(&*[(1+x^m)^14:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+q^m)^14,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^14)) \\ G. C. Greubel, Feb 25 2018
    

Formula

a(n) ~ (7/6)^(1/4) * exp(Pi * sqrt(14*n/3)) / (256 * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
a(0) = 1, a(n) = (14/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f. A(x) = (1/2)*( G(sqrt(x)) + G(-sqrt(x)) )/G(x^4), where G(x) = Product_{n >= 1} 1/(1 - x^n)^4 is the g.f. of A023003 (see also A000727). - Peter Bala, Oct 05 2023

A280328 Expansion of f(-x)^3 * f(-x^2) * chi(-x^3)^3 in powers of x where chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -3, -1, 5, 8, 1, -28, -11, 10, 41, 41, -26, -53, -84, 21, 101, 76, -3, -129, -99, 14, 190, 187, -59, -299, -263, 62, 336, 340, -27, -459, -370, 111, 645, 518, -228, -774, -806, 179, 973, 882, -147, -1233, -955, 291, 1565, 1325, -395, -1883, -1767, 338, 2318
Offset: 0

Views

Author

Michael Somos, Dec 31 2016

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 3*x - x^2 + 5*x^3 + 8*x^4 + x^5 - 28*x^6 - 11*x^7 + 10*x^8 + ...
G.f. = q^-1 - 3*q^5 - q^11 + 5*q^17 + 8*q^23 + q^29 - 28*q^35 - 11*q^41 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^3 QPochhammer[ x^2] QPochhammer[ x^3, x^6]^3, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^2 + A) * eta(x^3 + A)^3 / eta(x^6 + A)^3, n))};

Formula

Expansion of q * eta(q^6)^3 * eta(q^12) * eta(q^18)^3 / eta(q^36)^3 in powers of q^6.
Euler transform of period 6 sequence [-3, -4, -6, -4, -3, -4, ...].
a(n) = (-1)^n * A280384(n).
a(5*n + 1) / a(1) == A000727(n) (mod 5). a(125*n + 21) / a(21) == A000727(n) (mod 25).

A258779 Expansion of (f(-x) * phi(x))^2 in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, -5, -10, 9, 14, -10, 0, 14, 2, -11, -32, 0, 14, -9, 26, 2, 0, 16, -22, 14, 0, 0, 26, -17, -32, -22, -10, -34, 14, 45, 38, 0, -34, 38, -22, 2, 0, -10, 64, -20, 0, 0, 0, -23, -46, 16, 0, -46, -32, 26, -10, 25, 18, 0, 38, 50, 0, 0, -22, -80, 50, 0, 26, 2
Offset: 0

Views

Author

Michael Somos, Jun 09 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x - 5*x^2 - 10*x^3 + 9*x^4 + 14*x^5 - 10*x^6 + 14*x^8 + ...
G.f. = q + 2*q^13 - 5*q^25 - 10*q^37 + 9*q^49 + 14*q^61 - 10*q^73 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x] EllipticTheta[ 3, 0, x])^2, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 / (eta(x + A) * eta(x^4 + A)^2))^2, n))};

Formula

Expansion of q^(-1/12) * (eta(q^2)^5 / (eta(q) * eta(q^4)^2))^2 in powers of q.
Euler transform of period 4 sequence [ 2, -8, 2, -4, ...].
a(n) = A000727(2*n) = A187076(2*n) = A106508(4*n) = A187149(4*n).
Convolution square of A143378.

A272202 Number of solutions of the congruence y^2 == x^3 - 1 (mod p) as p runs through the primes.

Original entry on oeis.org

2, 3, 5, 3, 11, 11, 17, 27, 23, 29, 27, 47, 41, 51, 47, 53, 59, 47, 51, 71, 83, 75, 83, 89, 83, 101, 123, 107, 107, 113, 147, 131, 137, 123, 149, 147, 143, 171, 167, 173, 179, 155, 191, 191, 197, 171, 195, 195, 227, 251, 233, 239, 227, 251, 257, 263, 269, 243, 251, 281
Offset: 1

Views

Author

Wolfdieter Lang, May 05 2016

Keywords

Comments

In the Martin and Ono reference, in Theorem 2, this elliptic curve appears in the last column, starting with Conductor 144, as a strong Weil curve for the weight 2 newform eta^{12}(12*z) / (eta^4(6*z) * eta^4(24*z)), symbolically 12^{12} 6^{-4} 24^{-4}, with Im(z) > 0, and the Dedekind eta function. See A187076 which gives the q-expansion (q = exp(2*Pi*i*z)) of exp(-Pi*i*z/3)* eta(2*z)^{12} / (eta^4(z)*eta^4(4*z)). For the q-expansion of 12^{12} 6^{-4} 24^{-4} one has a leading zero and 5 interspersed 0's: 0,1,0,0,0,0,0,4,0,0,0,0,0,2,0,0,0,0,0,-8,...
The discriminant of this elliptic curve is -3^3 = -27.
For the elliptic curve y^2 == x^3 + 1 (mod prime(n)) see A000727, A272197, A272198, A272200 and A272201.

Examples

			The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used. The solutions (x, y) of y^2 == x^3 - 1 (mod prime(n)) begin:
n, prime(n), a(n)\ solutions (x, y)
1,    2,      2:   (0, 1), (1, 0)
2,    3,      3:   (1, 0), (2, 1), (2, 2)
3,    5,      5:   (0, 2), (0, 3), (1, 0),
                   (3, 1), (3, 4)
4,    7,      3:   (1, 0), (2, 0), (4, 0)
5,    11,    11:   (1, 0), (3, 2), (3, 9),
                   (5, 5), (5, 6), (7, 1),
                   (7, 10), (8, 4), (8, 7),
                   (10, 3), (10, 8)
...
		

Crossrefs

Formula

a(n) gives the number of solutions of the congruence y^2 == x^3 - 1 (mod prime(n)), n >= 1.

A173030 Expansion of q^(-1/6) * (eta(q)^4 + 7 * eta(q^7)^4) in powers of q.

Original entry on oeis.org

1, 3, 2, 8, -5, -4, -10, 8, -19, 0, 14, -16, -10, -4, 0, 6, 14, 20, 2, 0, -11, 20, 24, -16, 0, -4, 14, 8, -9, -15, 26, 0, 2, -28, 0, -16, -12, -28, -22, 0, 14, 16, 0, -30, 0, -28, 26, 32, -17, 0, 24, -16, -22, 0, -10, 32, -34, 55, 14, 0, 45, -4, 38, 8, 0, 0, -34, -8, 38, 0, -22, 42, 2, -28, 0, 0, -10, 20, -48, -40, -20, 44
Offset: 0

Views

Author

Michael Somos, Feb 07 2010

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 2*x^2 + 8*x^3 - 5*x^4 - 4*x^5 - 10*x^6 + 8*x^7 - 19*x^8 + ...
G.f. = q + 3*q^7 + 2*q^13 + 8*q^19 - 5*q^25 - 4*q^31 - 10*q^37 + 8*q^43 + ...
		

Crossrefs

Cf. A000727.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^4 + 7 x QPochhammer[ x^7]^4, {x, 0, n}]; (* Michael Somos, Sep 02 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 + 7 * x * eta(x^7 + A)^4, n))};

Formula

Expansion of f(-x)^4 + 7 * x * f(-x^7)^4 = chi(-x) * chi(-x^7) * (psi(x)^4 + 7 * x^3 * psi(x^7)^4) in powers of x where psi(), chi(), f() are Ramanujan theta functions.
Expansion of (phi(-x)^4 + 7 * phi(-x^7)^4) / (8 * chi(-x) * chi(-x^7)) in powers of x^2 where phi(), chi(), f() are Ramanujan theta functions.
a(n) = b(6*n + 1) where b(n) is multiplicative and b(2^e) = b(3^e) = 0^e, b(p^e) = (-p)^(e/2) (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (252 t)) = 252 (t/i)^2 * f(t) where q = exp(2 Pi i t).
A000727(n) = a(n) if n != 1 (mod 7). A000727(7*n + 1) + 7 * A000727(n) = a(7*n + 1).

A272199 Expansion of 1/(1 - 2*x + 13*x^2).

Original entry on oeis.org

1, 2, -9, -44, 29, 630, 883, -6424, -24327, 34858, 385967, 318780, -4380011, -12904162, 31131819, 230017744, 55321841, -2879586990, -6478357913, 24477915044, 133174482957, -51863929658, -1834996137757, -2995761189960, 17863427410921, 74671750291322
Offset: 0

Views

Author

Wolfdieter Lang, Apr 27 2016

Keywords

Comments

a(n) gives the coefficient c(13^n) of (eta(z^6))^4, a modular cusp form of weight 2, when expanded in powers of q = exp(2*Pi*i*z), Im(z) > 0, assuming alpha-multiplicativity (not valid for p = 2 and 3) with alpha(x) = x (weight 2) and input c(13) = +2. Eta is the Dedekind function. See the Apostol reference, p. 138, eq. (54) for alpha-multiplicativity and p. 130, eq. (39) with k=2. See also A000727 where a(n)=c(13^n) = A000727((13^n-1)/6)=A000727(2*A091030(n)), n >= 0. For the proof that alpha-multiplicativity leads to the recurrence involving Chebyshev's S polynomials see a comment on A168175, and the Apostol reference, Exercise 6., p. 139.

Examples

			a(2) = c(13^2) = A000727(2*A091030(2)) =
A000727(28) = -9.
		

References

  • Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 130, 138 - 139.

Crossrefs

Programs

  • Magma
    I:=[1,2]; [n le 2 select I[n] else 2*Self(n-1)-13*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 25 2016
  • Mathematica
    CoefficientList[Series[1/(1 - 2 x + 13 x^2), {x, 0, 25}], x] (* Michael De Vlieger, Apr 27 2016 *)
    LinearRecurrence[{2, -13}, {1, 2}, 30] (* Vincenzo Librandi, Nov 25 2016 *)
  • PARI
    Vec(1/(1-2*x+13*x^2) + O(x^99)) \\ Altug Alkan, Apr 28 2016
    

Formula

G.f.: 1/(1 - 2*x + 13*x^2).
a(n) = 2*a(n-1) - 13*a(n-2), a(-1) = 0, a(0) = 1.
a(n) = sqrt(13)^n * S(n, 2/sqrt(13)), n >= 0, with Chebyshev's S polynomials (A049310).
a(n) = (Ap^(n+1) - Am^(n+1))/(Ap - Am) with Ap:= 1 + 2*sqrt(3)*i and Am = 1 - 2*sqrt(3)*i, (Binet - de Moivre formula), where i is the imaginary unit.
E.g.f.: (sqrt(3)*sin(2*sqrt(3)*x) + 6*cos(2*sqrt(3)*x))*exp(x)/6. - Ilya Gutkovskiy, Apr 27 2016
Previous Showing 21-26 of 26 results.