A135805
Eighth column (k=7) of triangle A134832 (circular succession numbers).
Original entry on oeis.org
1, 0, 0, 120, 330, 6336, 61776, 785928, 10456875, 151099520, 2339361024, 38655753552, 678721170036, 12615988058880, 247449420044640, 5106608041235184, 110596074738524661, 2507849090860975488
Offset: 0
a(0)=1 because from the 7!/7 = 720 circular permutations of n=7 elements only one, namely (1,2,3,4,5,6,7), has seven successors.
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=7.
-
f[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := f[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[a[n, 7], {n, 7, 25}] (* G. C. Greubel, Nov 10 2016 *)
A135806
Ninth column (k=8) of triangle A134832 (circular succession numbers).
Original entry on oeis.org
1, 0, 0, 165, 495, 10296, 108108, 1473615, 20913750, 321086480, 5263562304, 91807414686, 1696802925090, 33116968654560, 680485905122760, 14681498118551154, 331788224215573983, 7837028408940548400
Offset: 0
a(0)=1 because from the 8!/8 = 5040 circular permutations of n=8 elements only one, namely (1,2,3,4,5,6,7,8), has eight successors.
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=8.
-
f[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := f[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[a[n, 8], {n, 8, 25}] (* G. C. Greubel, Nov 10 2016 *)
A027765
a(n) = (n+1)*binomial(n+1,5).
Original entry on oeis.org
5, 36, 147, 448, 1134, 2520, 5082, 9504, 16731, 28028, 45045, 69888, 105196, 154224, 220932, 310080, 427329, 579348, 773927, 1020096, 1328250, 1710280, 2179710, 2751840, 3443895, 4275180, 5267241, 6444032, 7832088, 9460704, 11362120, 13571712, 16128189
Offset: 4
- Vincenzo Librandi, Table of n, a(n) for n = 4..1000
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
[(n+1)*Binomial(n+1,5): n in [4..40]]; // Vincenzo Librandi, Aug 09 2017
-
a:=n->(sum((numbcomp(n,6)), j=2..n)):seq(a(n), n=6..34); # Zerinvary Lajos, Aug 26 2008
-
Table[(n+1)Binomial[n+1,5],{n,4,40}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{5,36,147,448,1134,2520,5082},40] (* Harvey P. Dale, Jan 15 2017 *)
A027769
a(n) = (n+1)*binomial(n+1, 9).
Original entry on oeis.org
9, 100, 605, 2640, 9295, 28028, 75075, 183040, 413270, 875160, 1755182, 3359200, 6172530, 10943240, 18795370, 31380096, 51074375, 81238300, 126544275, 193393200, 290435145, 429214500, 624962325, 897561600, 1272714300, 1783342704, 2471261100, 3389158080
Offset: 8
- T. D. Noe, Table of n, a(n) for n = 8..1000
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
Table[(n+1)*Binomial[n+1, 9], {n, 8, 35}] (* Amiram Eldar, Jan 30 2022 *)
A027770
a(n) = (n + 1)*binomial(n + 1, 10).
Original entry on oeis.org
10, 121, 792, 3718, 14014, 45045, 128128, 330616, 787644, 1755182, 3695120, 7407036, 14226212, 26313518, 47070144, 81719000, 138105110, 227779695, 367447080, 580870290, 901350450, 1374917115, 2064391680, 3054514320, 4458356760, 6425278860, 9150726816
Offset: 9
- T. D. Noe, Table of n, a(n) for n = 9..1000
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
-
a:= n-> (n+1)*binomial(n+1, 10):
seq(a(n), n=9..36); # Alois P. Heinz, Oct 04 2019
-
((# + 1) Binomial[# + 1, 10] &) /@ Range[9, 48] (* Alonso del Arte, Oct 04 2019 *)
A027771
a(n) = (n+1)*binomial(n+1,11).
Original entry on oeis.org
11, 144, 1014, 5096, 20475, 69888, 210392, 572832, 1436058, 3359200, 7407036, 15519504, 31097794, 59907456, 111435000, 200880160, 352023165, 601277040, 1003321410, 1638819000, 2624841765, 4128783360, 6386711760, 9727323840, 14602906500, 21628990656
Offset: 10
- T. D. Noe, Table of n, a(n) for n = 10..1000
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
Table[(n+1)*Binomial[n+1, 11], {n, 10, 35}] (* Amiram Eldar, Jan 30 2022 *)
A134515
Third column (k=2) of triangle A134832 (circular succession numbers).
Original entry on oeis.org
1, 0, 0, 10, 15, 168, 1008, 8244, 73125, 726440, 7939008, 94744494, 1225760627, 17088219120, 255365758560, 4072255216296, 69021889788969, 1239055874931312, 23484788783212480, 468656477004105810, 9821896865573503095
Offset: 0
a(2)=0 because the 4!/4 = 6 circular permutations of n=4 elements (1,2,3,4), (1,4,3,2), (1,3,4,2),(1,2,4,3), (1,4,2,3) and (1,3,2,4) have 4,0,1,1,1 and 1 successor pair, respectively.
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=2.
A134833
Alternating row sums of triangle A134832.
Original entry on oeis.org
1, -1, 1, 0, -2, 12, -16, 144, 368, 4768, 39488, 412288, 4577280, 55671808, 731390976, 10335518720, 156303439872, 2518984822784, 43099089166336, 780268880543744, 14902336357040128, 299452809649520640, 6315501510334480384, 139485953831272710144, 3219718099932104622080
Offset: 0
-
A000757[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := A000757[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[Sum[a[n, k]*(-1)^k, {k, 0, n}], {n, 0, 10}] (* G. C. Greubel, Nov 10 2016 *)
A135801
Fourth column (k=3) of triangle A134832 (circular succession numbers).
Original entry on oeis.org
1, 0, 0, 20, 35, 448, 3024, 27480, 268125, 2905760, 34402368, 442140972, 6128803135, 91137168640, 1447072631840, 24433531297776, 437138635330137, 8260372499542080, 164393521482487360, 3436814164696775940
Offset: 0
a(1)=0 because the 4!/4 = 6 circular permutations of n=4 elements (1,2,3,4), (1,4,3,2), (1,3,4,2),(1,2,4,3), (1,4,2,3) and (1,3,2,4) have 4,0,1,1,1 and 1 successor pair, respectively.
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=3.
-
f[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := f[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[a[n, 3], {n, 3, 10}] (* G. C. Greubel, Nov 10 2016 *)
A135807
Tenth column (k=9) of triangle A134832 (circular succession numbers).
Original entry on oeis.org
1, 0, 0, 220, 715, 16016, 180180, 2619760, 39503750, 642172960, 11111964864, 204016477080, 3959206825210, 80952590044480, 1739019535313720, 39150661649469744, 921633956154372175, 22640304292494917600
Offset: 0
a(0)=1 because from the 9!/9 = 40320 circular permutations of n=9 elements only one, namely (1,2,3,4,5,6,7,8,9), has nine successors.
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=9.
-
f[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := f[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[a[n, 9], {n, 9, 25}] (* G. C. Greubel, Nov 10 2016 *)
-
a(n)=((-1)^n + sum( k=0, n-1, (-1)^k * binomial( n, k) * (n - k - 1)!))*binomial(n+9,9) \\ Charles R Greathouse IV, Nov 10 2016
Comments