A122836
Number of topologies on n labeled elements in which at least one element belongs to some pair of noncomparable members of the topology.
Original entry on oeis.org
0, 0, 0, 10, 243, 6131, 202503, 9464302, 641960602, 63249658532, 8976900501699, 1816843604787333, 519355528928422629, 207881392866381430470, 115617051961092253351796, 88736269118240819706018342, 93411113411702066083187522063, 134137950093337685116171325021995, 261492535743634369726764132015849219
Offset: 0
Nathan K. McGregor (mcgregnk(AT)ese.wustl.edu), Sep 15 2006
- J. Munkres, Topology, Prentice Hall, (2000), p. 76.
A245767
Triangular array read by rows: T(n,k) is the number of transitive relations on {1,2,...,n} that have exactly k reflexive points, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 3, 6, 4, 19, 57, 66, 29, 219, 876, 1428, 1116, 355, 4231, 21155, 44500, 49070, 28405, 6942, 130023, 780138, 2013810, 2858700, 2354415, 1068576, 209527, 6129859, 42909013, 131457522, 228345565, 242894155, 158322528, 58628647, 9535241
Offset: 0
T(2,1) = 6 because we have: {(1,1)}, {(2,2)}, {(1,1),(1,2)}, {(1,1),(2,1)}, {(2,2),(1,2)}, {(2,2),(2,1)}.
Triangle T(n,k) begins:
1;
1, 1;
3, 6, 4;
19, 57, 66, 29;
219, 876, 1428, 1116, 355;
4231, 21155, 44500, 49070, 28405, 6942;
130023, 780138, 2013810, 2858700, 2354415, 1068576, 209527;
...
-
A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
lg = Length[A001035];
A[x_] = Sum[A001035[[n+1]] x^n/n!, {n, 0, lg-1}];
CoefficientList[#, y]& /@ (CoefficientList[A[x + Exp[y*x]-1] + O[x]^lg, x]* Range[0, lg-1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)
A247231
Triangular array read by rows: T(n,k) is the number of ways to partition an n-set into exactly k blocks and then partially order the blocks, n>=1, 1<=k<=n.
Original entry on oeis.org
1, 1, 3, 1, 9, 19, 1, 21, 114, 219, 1, 45, 475, 2190, 4231, 1, 93, 1710, 14235, 63465, 130023, 1, 189, 5719, 76650, 592340, 2730483, 6129859, 1, 381, 18354, 372519, 4442550, 34586118, 171636052, 431723379, 1, 765, 57475, 1701630, 29409681, 344040858, 2831994858, 15542041644, 44511042511
Offset: 1
Triangle T(n,k) begins:
1;
1, 3;
1, 9, 19;
1, 21, 114, 219;
1, 45, 475, 2190, 4231;
1, 93, 1710, 14235, 63465, 130023;
1, 189, 5719, 76650, 592340, 2730483, 6129859;
...
Leading diagonal gives
A001035, n >= 1.
Apparently column 2 gives the terms > 1 of
A068156.
-
A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
lg = Length[A001035];
A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}];
Rest[CoefficientList[#, y]]& /@ (CoefficientList[A[y*(Exp[x] - 1)] + O[x]^lg, x]*Range[0, lg - 1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)
A280192
Triangle read by rows: T(n,k) = number of topologies on an n-set X such that there are exactly k elements in X that are topologically distinguishable, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 1, 0, 3, 1, 9, 0, 19, 10, 12, 114, 0, 219, 31, 300, 190, 2190, 0, 4231, 361, 1158, 10140, 4380, 63465, 0, 130023, 2164, 26341, 46389, 451920, 148085, 2730483, 0, 6129859, 32663, 192496, 1930852, 2381624, 27601000, 7281288, 171636052, 0, 431723379
Offset: 0
Triangle begins:
1;
0, 1;
1, 0, 3;
1, 9, 0, 19;
10, 12, 114, 0, 219;
31, 300, 190, 2190, 0, 4231;
361, 1158, 10140, 4380, 63465, 0, 130023;
2164, 26341, 46389, 451920, 148085, 2730483, 0, 6129859;
...
-
A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
lg = Length[A001035];
A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}];
CoefficientList[#, y]& /@ (CoefficientList[A[Exp[x] - 1 - x + y*x] + O[x]^lg, x]*Range[0, lg - 1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)
A335987
Triangular array read by rows: T(n,k) is the number of labeled quasi-orders on [n] that are composed of exactly k irreducible components n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 0, 11, 12, 6, 0, 147, 112, 72, 24, 0, 3412, 1910, 1020, 480, 120, 0, 121553, 52184, 21870, 9600, 3600, 720, 0, 6353629, 2101540, 693672, 254520, 96600, 30240, 5040, 0, 476850636, 120988214, 31163496, 9289728, 3116400, 1048320, 282240, 40320
Offset: 0
1;
0, 1;
0, 2, 2;
0, 11, 12, 6;
0, 147, 112, 72, 24;
0, 3412, 1910, 1020, 480, 120;
...
-
nn = 9; A[x_] := Total[Cases[Import["https://oeis.org/A000798/b000798.txt",
"Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]];
Table[Take[(Range[0, nn]! CoefficientList[Series[1/(1 - y (1 - 1/A[x])), {x, 0, nn}], {x, y}])[[i]], i], {i, 1, nn}] // Grid
A369776
Triangular array read by rows. T(n,k) is the number of inequivalent (as defined below) transitive binary relations R on [n] such that |domain(R intersect R^(-1))| = k, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 3, 2, 4, 19, 9, 12, 29, 219, 76, 72, 116, 355, 4231, 1095, 760, 870, 1775, 6942, 130023, 25386, 13140, 11020, 15975, 41652, 209527, 6129859, 910161, 355404, 222285, 236075, 437346, 1466689, 9535241, 431723379, 49038872, 14562576, 6871144, 5442150, 7386288, 17600268, 76281928, 642779354
Offset: 0
Triangle begins
1;
1, 1;
3, 2, 4;
19, 9, 12, 29;
219, 76, 72, 116, 355;
4231, 1095, 760, 870, 1775, 6942;
...
-
nn = 8; posets = Select[Import["https://oeis.org/A001035/b001035.txt", "Table"],
Length@# == 2 &][[All, 2]];p[x_] := Total[posets Table[x^i/i!, {i, 0, 18}]];
Map[Select[#, # > 0 &] &,Table[n!, {n, 0, nn}] CoefficientList[Series[ p[Exp[ y x] - 1]*p[ x], {x, 0, nn}], {x, y}]] // Grid
A369778
Number of inequivalent (as defined below) transitive binary relations on [n].
Original entry on oeis.org
1, 2, 9, 69, 838, 15673, 446723, 19293060, 1251685959, 120386313553, 16900121126060, 3411142115103803, 977085613480027515, 392874276568326733742, 219743920204264577507581, 169664195991510052549565897, 179646979835553234783655867894, 259379781267410563698300438118605, 508142540645401577520522108019282903
Offset: 0
-
nn = 16; posets = Select[Import["https://oeis.org/A001035/b001035.txt", "Table"],
Length@# == 2 &][[All, 2]];p[x_] := Total[posets Table[x^i/i!, {i, 0, 18}]];
Table[n!, {n, 0, nn}] CoefficientList[Series[ p[Exp[ x] - 1]*p[ x], {x, 0, nn}], x]
A369799
Number of binary relations R on [n] such that q(R) is a quasi-order and s(R) is a strict partial order (where q(R) and s(R) are defined below).
Original entry on oeis.org
1, 2, 13, 237, 11590, 1431913, 424559959, 292150780260, 456213083587511, 1589279411184268465, 12188163803127032036308, 203538148644721100472292979, 7336995548182992341725851094195, 566597426371900580541745092349604750, 93154354372753215966288131247384428212545, 32423220989898980232206367503220063835343283713
Offset: 0
-
nn = 18; posets =Select[Import["https://oeis.org/A001035/b001035.txt", "Table"],
Length@# == 2 &][[All, 2]]; p[x_] := Total[posets Table[x^i/i!, {i, 0, 18}]]; Map[Total, (Map[Select[#, # > 0 &] &,Table[n!, {n, 0, nn}] CoefficientList[
Series[ p[Exp[ y x] - 1]*p[ x], {x, 0, nn}], {x, y}]])*
Table[Table[3^(k (n - k)), {k, 0, n}], {n, 0, nn}]]
A046904
Number of isomorphism classes of posets with n points with property that there is no nonsingelton proper subset T for which x not in T implies xT or x incomparable with every element of T.
Original entry on oeis.org
1, 1, 0, 0, 1, 4, 28, 234
Offset: 0
- J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
A046905
Posets with n points with property that there is no nonsingelton proper subset T for which x not in T implies xT or x incomparable with every element of T.
Original entry on oeis.org
1, 1, 0, 0, 24, 360, 17400, 1066800
Offset: 0
- J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
Comments