cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 83 results. Next

A122836 Number of topologies on n labeled elements in which at least one element belongs to some pair of noncomparable members of the topology.

Original entry on oeis.org

0, 0, 0, 10, 243, 6131, 202503, 9464302, 641960602, 63249658532, 8976900501699, 1816843604787333, 519355528928422629, 207881392866381430470, 115617051961092253351796, 88736269118240819706018342, 93411113411702066083187522063, 134137950093337685116171325021995, 261492535743634369726764132015849219
Offset: 0

Views

Author

Nathan K. McGregor (mcgregnk(AT)ese.wustl.edu), Sep 15 2006

Keywords

Comments

See comments in A122835.

References

  • J. Munkres, Topology, Prentice Hall, (2000), p. 76.

Crossrefs

a(n) = A000798(n) - A122835(n).

Programs

Extensions

a(13) corrected and a(16)-a(18) by Jean-François Alcover, Jan 01 2020

A245767 Triangular array read by rows: T(n,k) is the number of transitive relations on {1,2,...,n} that have exactly k reflexive points, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 3, 6, 4, 19, 57, 66, 29, 219, 876, 1428, 1116, 355, 4231, 21155, 44500, 49070, 28405, 6942, 130023, 780138, 2013810, 2858700, 2354415, 1068576, 209527, 6129859, 42909013, 131457522, 228345565, 242894155, 158322528, 58628647, 9535241
Offset: 0

Views

Author

Geoffrey Critzer, Jul 31 2014

Keywords

Comments

Row sums give A006905.
Column k=0 is A001035.
T(n,n) = A000798(n).

Examples

			T(2,1) = 6 because we have: {(1,1)}, {(2,2)}, {(1,1),(1,2)}, {(1,1),(2,1)}, {(2,2),(1,2)}, {(2,2),(2,1)}.
Triangle T(n,k) begins:
       1;
       1,      1;
       3,      6,       4;
      19,     57,      66,      29;
     219,    876,    1428,    1116,     355;
    4231,  21155,   44500,   49070,   28405,    6942;
  130023, 780138, 2013810, 2858700, 2354415, 1068576, 209527;
  ...
		

Crossrefs

Programs

  • Mathematica
    A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
    lg = Length[A001035];
    A[x_] = Sum[A001035[[n+1]] x^n/n!, {n, 0, lg-1}];
    CoefficientList[#, y]& /@ (CoefficientList[A[x + Exp[y*x]-1] + O[x]^lg, x]* Range[0, lg-1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)

Formula

E.g.f.: A(x + exp(y*x) - 1) where A(x) is the e.g.f. for A001035.

A247231 Triangular array read by rows: T(n,k) is the number of ways to partition an n-set into exactly k blocks and then partially order the blocks, n>=1, 1<=k<=n.

Original entry on oeis.org

1, 1, 3, 1, 9, 19, 1, 21, 114, 219, 1, 45, 475, 2190, 4231, 1, 93, 1710, 14235, 63465, 130023, 1, 189, 5719, 76650, 592340, 2730483, 6129859, 1, 381, 18354, 372519, 4442550, 34586118, 171636052, 431723379, 1, 765, 57475, 1701630, 29409681, 344040858, 2831994858, 15542041644, 44511042511
Offset: 1

Views

Author

Geoffrey Critzer, Nov 27 2014

Keywords

Comments

T(n,k) is also the number of topologies U on an n-set such that a minimal basis for U contains exactly k sets. - Geoffrey Critzer, Dec 26 2016
T(n,k) is also the number of transitive, reflexive Boolean relation matrices on [n] that have exactly k strongly connected components. - Geoffrey Critzer, Feb 27 2023

Examples

			Triangle T(n,k) begins:
  1;
  1,   3;
  1,   9,   19;
  1,  21,  114,   219;
  1,  45,  475,  2190,   4231;
  1,  93, 1710, 14235,  63465,  130023;
  1, 189, 5719, 76650, 592340, 2730483, 6129859;
  ...
		

Crossrefs

Row sums gives A000798, n >= 1.
Leading diagonal gives A001035, n >= 1.
Apparently column 2 gives the terms > 1 of A068156.

Programs

  • Mathematica
    A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
    lg = Length[A001035];
    A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}];
    Rest[CoefficientList[#, y]]& /@ (CoefficientList[A[y*(Exp[x] - 1)] + O[x]^lg, x]*Range[0, lg - 1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)

Formula

E.g.f.: A(y*(exp(x) - 1)) where A(x) is the e.g.f. for A001035.

A280192 Triangle read by rows: T(n,k) = number of topologies on an n-set X such that there are exactly k elements in X that are topologically distinguishable, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 1, 0, 3, 1, 9, 0, 19, 10, 12, 114, 0, 219, 31, 300, 190, 2190, 0, 4231, 361, 1158, 10140, 4380, 63465, 0, 130023, 2164, 26341, 46389, 451920, 148085, 2730483, 0, 6129859, 32663, 192496, 1930852, 2381624, 27601000, 7281288, 171636052, 0, 431723379
Offset: 0

Views

Author

Geoffrey Critzer, Dec 28 2016

Keywords

Comments

T(n,0) = A280202(n) is the number of topologies on an n-set X such that for all x in X there exists a y in X such that x and y have exactly the same neighborhoods.
Equivalently, T(n,k) is the number of labeled quasi-orders R on [n] with exactly k singletons in the equivalence relation R intersect R^(-1), cf. Schein link. - Geoffrey Critzer, Apr 18 2023

Examples

			Triangle begins:
     1;
     0,     1;
     1,     0,     3;
     1,     9,     0,     19;
    10,    12,   114,      0,    219;
    31,   300,   190,   2190,      0,    4231;
   361,  1158, 10140,   4380,  63465,       0, 130023;
  2164, 26341, 46389, 451920, 148085, 2730483,      0, 6129859;
  ...
		

Crossrefs

Right border gives A001035.
Row sums give A000798.
Column k=0 gives A280202.
Cf. A006905.

Programs

  • Mathematica
    A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
    lg = Length[A001035];
    A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}];
    CoefficientList[#, y]& /@ (CoefficientList[A[Exp[x] - 1 - x + y*x] + O[x]^lg, x]*Range[0, lg - 1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)

Formula

E.g.f.: A(exp(x) - 1 - x + y*x) where A(x) is the e.g.f. for A001035.
Sum_{k=0..n} T(n,k)*2^k = A006905(n). - Geoffrey Critzer, Apr 18 2023

A335987 Triangular array read by rows: T(n,k) is the number of labeled quasi-orders on [n] that are composed of exactly k irreducible components n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 11, 12, 6, 0, 147, 112, 72, 24, 0, 3412, 1910, 1020, 480, 120, 0, 121553, 52184, 21870, 9600, 3600, 720, 0, 6353629, 2101540, 693672, 254520, 96600, 30240, 5040, 0, 476850636, 120988214, 31163496, 9289728, 3116400, 1048320, 282240, 40320
Offset: 0

Views

Author

Geoffrey Critzer, Jul 10 2022

Keywords

Examples

			  1;
  0,    1;
  0,    2,    2;
  0,   11,   12,    6;
  0,  147,  112,   72,  24;
  0, 3412, 1910, 1020, 480, 120;
  ...
		

Crossrefs

Cf. A000798 (row sums), A046912 (column k=1), A000142 (main diagonal), A354615.

Programs

  • Mathematica
    nn = 9; A[x_] := Total[Cases[Import["https://oeis.org/A000798/b000798.txt",
          "Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]];
    Table[Take[(Range[0, nn]! CoefficientList[Series[1/(1 - y (1 - 1/A[x])), {x, 0, nn}], {x, y}])[[i]],  i], {i, 1, nn}] // Grid

Formula

E.g.f.: 1/(1 - y*(1 - 1/A(x))) where A(x) is the e.g.f. for A000798.

A369776 Triangular array read by rows. T(n,k) is the number of inequivalent (as defined below) transitive binary relations R on [n] such that |domain(R intersect R^(-1))| = k, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 3, 2, 4, 19, 9, 12, 29, 219, 76, 72, 116, 355, 4231, 1095, 760, 870, 1775, 6942, 130023, 25386, 13140, 11020, 15975, 41652, 209527, 6129859, 910161, 355404, 222285, 236075, 437346, 1466689, 9535241, 431723379, 49038872, 14562576, 6871144, 5442150, 7386288, 17600268, 76281928, 642779354
Offset: 0

Views

Author

Geoffrey Critzer, Jan 31 2024

Keywords

Comments

For a transitive relation R on [n], let E = domain(R intersect R^(-1)) and let F = [n]\E. Let q(R) = R intersect E X E and let s(R) = R intersect F X F. Let ~ be the equivalence relation on the set of transitive binary relations on [n] defined by: R_1 ~ R_2 iff q(R_1) = q(R_2) and s(R_1) = s(R_2). Here, two transitive relations are inequivalent if they are in distinct equivalence classes under ~. q(R) is a quasi-order (A000798) and s(R) is a strict partial order (A001035). The relation q(R) union s(R) may be taken as its class representative. See Norris link.

Examples

			Triangle begins
    1;
    1,    1;
    3,    2,   4;
   19,    9,  12,  29;
  219,   76,  72, 116,  355;
 4231, 1095, 760, 870, 1775, 6942;
 ...
		

Crossrefs

Cf. A001035 (column k=0), A000798 (main diagonal), A006059 (column k=1), A369778 (row sums), A006905, A369799.

Programs

  • Mathematica
    nn = 8; posets = Select[Import["https://oeis.org/A001035/b001035.txt", "Table"],
       Length@# == 2 &][[All, 2]];p[x_] := Total[posets Table[x^i/i!, {i, 0, 18}]];
    Map[Select[#, # > 0 &] &,Table[n!, {n, 0, nn}] CoefficientList[Series[ p[Exp[ y  x] - 1]*p[ x], {x, 0, nn}], {x, y}]] // Grid

Formula

E.g.f.: p(exp(y*x) - 1)*p(x) where p(x) is the e.g.f. for A001035.

A369778 Number of inequivalent (as defined below) transitive binary relations on [n].

Original entry on oeis.org

1, 2, 9, 69, 838, 15673, 446723, 19293060, 1251685959, 120386313553, 16900121126060, 3411142115103803, 977085613480027515, 392874276568326733742, 219743920204264577507581, 169664195991510052549565897, 179646979835553234783655867894, 259379781267410563698300438118605, 508142540645401577520522108019282903
Offset: 0

Views

Author

Geoffrey Critzer, Jan 31 2024

Keywords

Comments

For a transitive relation R on [n], let E = domain(R intersect R^(-1)) and let F = [n]\E. Let q(R) = R intersect E X E and let s(R) = R intersect F X F. Let ~ be the equivalence relation on the set of transitive binary relations on [n] defined by: R_1 ~ R_2 iff q(R_1) = q(R_2) and s(R_1) = s(R_2). Here, two transitive relations are inequivalent if they are in distinct equivalence classes under ~. q(R) is a quasi-order (A000798) and s(R) is a strict partial order (A001035). See Norris link.
Equivalently, with E,F as defined above, a(n) is the number of transitive relations R on [n] such that if (x,y) is in R then x and y are both in E or x and y are both in F.
Conjecture: lim_{n->oo} a(n)/A001035(n) = 2.

Crossrefs

Row sums of A369776.

Programs

  • Mathematica
    nn = 16; posets = Select[Import["https://oeis.org/A001035/b001035.txt", "Table"],
       Length@# == 2 &][[All, 2]];p[x_] := Total[posets Table[x^i/i!, {i, 0, 18}]];
    Table[n!, {n, 0, nn}] CoefficientList[Series[ p[Exp[   x] - 1]*p[ x], {x, 0, nn}], x]

Formula

E.g.f.: p(exp(x) - 1)*p(x) where p(x) is the e.g.f. for A001035.

A369799 Number of binary relations R on [n] such that q(R) is a quasi-order and s(R) is a strict partial order (where q(R) and s(R) are defined below).

Original entry on oeis.org

1, 2, 13, 237, 11590, 1431913, 424559959, 292150780260, 456213083587511, 1589279411184268465, 12188163803127032036308, 203538148644721100472292979, 7336995548182992341725851094195, 566597426371900580541745092349604750, 93154354372753215966288131247384428212545, 32423220989898980232206367503220063835343283713
Offset: 0

Views

Author

Geoffrey Critzer, Feb 01 2024

Keywords

Comments

For a relation R on [n], let E = domain(R intersect R^(-1)) and let F = [n]\E. Then q(R) := R intersect E X E and let s(R) := R intersect F X F.

Crossrefs

Programs

  • Mathematica
    nn = 18; posets =Select[Import["https://oeis.org/A001035/b001035.txt", "Table"],
       Length@# == 2 &][[All, 2]]; p[x_] := Total[posets Table[x^i/i!, {i, 0, 18}]]; Map[Total, (Map[Select[#, # > 0 &] &,Table[n!, {n, 0, nn}] CoefficientList[
          Series[ p[Exp[ y  x] - 1]*p[ x], {x, 0, nn}], {x, y}]])*
      Table[Table[3^(k (n - k)), {k, 0, n}], {n, 0, nn}]]

Formula

a(n) = Sum_{k=0..n} A369776(n,k) * 3^(k*(n-k)).

A046904 Number of isomorphism classes of posets with n points with property that there is no nonsingelton proper subset T for which x not in T implies xT or x incomparable with every element of T.

Original entry on oeis.org

1, 1, 0, 0, 1, 4, 28, 234
Offset: 0

Views

Author

John A. Wright

Keywords

References

  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.

Crossrefs

A subset of the posets enumerated in A003431. Cf. A046905.

A046905 Posets with n points with property that there is no nonsingelton proper subset T for which x not in T implies xT or x incomparable with every element of T.

Original entry on oeis.org

1, 1, 0, 0, 24, 360, 17400, 1066800
Offset: 0

Views

Author

John A. Wright

Keywords

References

  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.

Crossrefs

A subset of the posets enumerated in A003431. Cf. A046904.
Previous Showing 51-60 of 83 results. Next