A247660
Number of bi-indecomposable topologies on n labeled points.
Original entry on oeis.org
1, 2, 15, 229, 5298, 177661, 8605831, 601894158, 60571434501, 8716575772821, 1780241773757704, 511992638746006383, 205785031866223973343, 114780183140747719353332, 88271680420025831479693219, 93054995762621287409298093049
Offset: 1
-
A000798 = {1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203};
f[x_] = Sum[A000798[[n+1]] x^n, {n, 0, nmax = Length[A000798]-1}];
CoefficientList[(-2 + 3 f[x] - f[x]^2)/f[x] + O[x]^nmax, x][[2 ;; -2]] (* Jean-François Alcover, Oct 10 2018 *)
A265847
Number of different quasi-orders with n labeled elements, modulo n.
Original entry on oeis.org
0, 0, 2, 3, 2, 1, 2, 2, 0, 3, 2, 1, 2, 6, 1, 15, 2, 1, 2
Offset: 1
a(4) = A000798(4) mod 4 = 355 mod 4 = 3.
a(5) = A000798(5) mod 5 = 6942 mod 5 = 2.
a(6) = A000798(6) mod 6 = 209527 mod 6 = 1.
A281547
Total number of subsets of X that are both open and closed summed over all distinct topological spaces X that can be placed on an n-set.
Original entry on oeis.org
1, 2, 10, 82, 1038, 19754, 561778, 23890766, 1516425978, 142478603490, 19560464078774, 3868751287074546, 1088233853378616578, 430599111941369628326, 237480490462200909980594, 181131722604060126010422898, 189780362331001773747253412782, 271553393666987988551182068682458, 527932854364810523962111033565618786
Offset: 0
a(2) = 10. Let X = {a,b}. There are four distinct topologies (A000798) that can be placed on X: {{},X} {{},{a},X} {{}, {b},X} {{},{a},{b},X}. These topologies have 2 + 2 + 2 + 4 sets respectively that are both open and closed.
-
A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]];
lg = Length[A001035];
A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}];
CoefficientList[A[Exp[x] - 1]^2 + O[x]^lg, x]*Range[0, lg - 1]! (* Jean-François Alcover, Jan 01 2020 *)
A326909
Number of sets of subsets of {1..n} closed under union and intersection and covering all of the vertices.
Original entry on oeis.org
2, 2, 7, 45, 500, 9053, 257151, 11161244, 725343385, 69407094565, 9639771895398, 1919182252611715, 541764452276876719, 214777343584048313318, 118575323291814379721651, 90492591258634595795504697, 94844885130660856889237907260, 135738086271526574073701454370969, 263921383510041055422284977248713291
Offset: 0
The a(0) = 2 through a(2) = 7 sets of subsets:
{} {{1}} {{1,2}}
{{}} {{},{1}} {{},{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{},{1},{2},{1,2}}
Covering sets of subsets are
A000371.
The case without empty sets is
A108798.
The case with a single covering edge is
A326878.
The unlabeled version is
A326898 for n > 0.
The case closed only under union is
A326906.
The case closed only under intersection is (also)
A326906.
-
Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}]
(* Second program: *)
A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]];
A006058 = Cases[Import["https://oeis.org/A006058/b006058.txt", "Table"], {, }][[All, 2]];
a[n_] := A006058[[n + 1]] + A000798[[n + 1]];
a /@ Range[0, 18] (* Jean-François Alcover, Dec 30 2019 *)
A360984
Triangular array read by rows. T(n,k) is the number of idempotent Boolean relation matrices on [n] with exactly k reflexive points, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 6, 4, 1, 27, 66, 29, 1, 108, 780, 1116, 355, 1, 405, 8020, 29250, 28405, 6942, 1, 1458, 76110, 649260, 1460425, 1068576, 209527
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 6, 4;
1, 27, 66, 29;
1, 108, 780, 1116, 355;
1, 405, 8020, 29250, 28405, 6942;
...
A018196
Possible numbers of complements of topologies on 5 points.
Original entry on oeis.org
1, 4, 8, 9, 15, 32
Offset: 0
A101620
Decimal encoding of digraph topologies.
Original entry on oeis.org
1, 3, 9, 11, 13, 15, 129, 131, 133, 137, 139, 141, 143, 145, 153, 161, 163, 165, 171, 175, 177, 179, 187, 193, 195, 197, 205, 207, 209, 213, 221, 241, 243, 245, 255
Offset: 1
Let a = 2, b = 4, c = 16, d = 256, ...
a(19) = 171 because we can map { }, a, ab, ac, abc to 1 + 2 + 8 + 32 + 128
Viewed as an array the table begins
1
3
9 11 13 15
129 131 133 137 139 141 143 145 153 161 163 165 171 175 177 ...
with respectively 1 1 4 29 355 ... (A000798) entries on each row.
Original entry on oeis.org
1, 2, 5, 21, 166, 2277, 49901, 1675904, 84239935, 6231045077, 668949067432, 103005162942955, 22511886374045653, 6918461813753405930, 2965189776573865320121, 1759287329824925168339697, 1435531006280642249195752862, 1601571709194974043628781397985, 2430449338115875591262479128994073
Offset: 0
A178689
Partial sums of A122836 (number of topologies on n labeled elements in which at least one element belongs to some pair of noncomparable members of the topology).
Original entry on oeis.org
0, 0, 0, 10, 253, 6384, 208887, 9673189, 651633791, 63901292323, 9040801794022, 1825884406581355, 521181413335003984, 208402574279716434454, 115825454535371969786250, 88852094572776191675804592
Offset: 0
a(4) = 0 + 0 + 0 + 10 + 243 = 253 = 11 * 23.
A234268
Number of convex topologies on an n-point totally ordered set.
Original entry on oeis.org
1, 4, 21, 129, 876, 6376, 48829, 388771, 3191849, 26864936
Offset: 1
Comments