cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 265 results. Next

A320813 Number of non-isomorphic multiset partitions of an aperiodic multiset of weight n such that there are no singletons and all parts are themselves aperiodic multisets.

Original entry on oeis.org

1, 0, 1, 2, 5, 13, 33, 104, 293, 938, 2892
Offset: 0

Views

Author

Gus Wiseman, Nov 08 2018

Keywords

Comments

Also the number of nonnegative integer matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which (1) the row sums are all > 1, (2) the positive entries in each row are relatively prime, and (3) the column-sums are relatively prime.
A multiset is aperiodic if its multiplicities are relatively prime.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 13 multiset partitions:
  {{1,2}}  {{1,2,2}}  {{1,2,2,2}}    {{1,1,2,2,2}}
           {{1,2,3}}  {{1,2,3,3}}    {{1,2,2,2,2}}
                      {{1,2,3,4}}    {{1,2,2,3,3}}
                      {{1,2},{3,4}}  {{1,2,3,3,3}}
                      {{1,3},{2,3}}  {{1,2,3,4,4}}
                                     {{1,2,3,4,5}}
                                     {{1,2},{1,2,2}}
                                     {{1,2},{2,3,3}}
                                     {{1,2},{3,4,4}}
                                     {{1,2},{3,4,5}}
                                     {{1,3},{2,3,3}}
                                     {{1,4},{2,3,4}}
                                     {{2,3},{1,2,3}}
		

Crossrefs

This is the case of A320804 where the underlying multiset is aperiodic.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    aperQ[m_]:=Length[m]==0||GCD@@Length/@Split[Sort[m]]==1;
    Table[Length[Union[brute /@ Select[mpm[n],And[Min@@Length/@#>1,aperQ[Join@@#]&&And@@aperQ /@ #]&]]],{n,0,7}] (* Gus Wiseman, Jan 19 2024 *)

Extensions

Definition corrected by Gus Wiseman, Jan 19 2024

A328220 Number of strict integer partitions of n with no pair of consecutive parts relatively prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 1, 5, 1, 5, 4, 6, 3, 10, 3, 11, 7, 12, 3, 19, 5, 18, 12, 23, 9, 36, 11, 33, 21, 40, 20, 58, 19, 58, 35, 70, 31, 98, 36, 101, 65, 112, 56, 155, 64, 164, 97, 188, 88, 250, 112, 256, 157, 293, 145, 392, 163, 399, 241, 461, 242
Offset: 0

Views

Author

Gus Wiseman, Oct 14 2019

Keywords

Examples

			The a(2) = 1 through a(20) = 11 partitions (A..K = 10..20):
  2  3  4  5  6   7  8   9   A   B  C    D  E    F   G    H    I    J    K
              42     62  63  64     84      86   96  A6   863  A8   964  C8
                             82     93      A4   A5  C4   962  C6   A63  E6
                                    A2      C2   C3  E2        E4        F5
                                    642     842      862       F3        G4
                                                     A42       G2        I2
                                                               864       A64
                                                               963       A82
                                                               A62       C62
                                                               C42       E42
                                                                         8642
		

Crossrefs

The non-strict case is A328187.
Partitions with all consecutive parts relatively prime are A328172, with strict case A328188.
Strict partitions with relatively prime parts are A078374.
Partitions with no consecutive divisibilities are A328171.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MatchQ[#,{_,x_,y_,_}/;GCD[x,y]==1]&]],{n,0,30}]

A282750 Triangle read by rows: T(n,k) is the number of partitions of n into k parts x_1, x_2, ..., x_k such that gcd(x_1, x_2, ..., x_k) = 1 (where 1 <= k <= n).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 3, 4, 3, 2, 1, 1, 0, 2, 4, 4, 3, 2, 1, 1, 0, 3, 6, 6, 5, 3, 2, 1, 1, 0, 2, 6, 8, 6, 5, 3, 2, 1, 1, 0, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 2, 8, 12, 12, 10, 7, 5, 3, 2, 1, 1, 0, 6, 14, 18, 18, 14
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2017

Keywords

Comments

Columns 2-10 are A023022-A023030. - Lars Blomberg Mar 08 2017
To base the triangle on (0, 0) a column (1, 0, 0, ...) has to be appended to the left hand side of the triangle. To compute this triangle with Michael De Vlieger's Mathematica program only the ranges of the indices have to be adapted. The SageMath program computes the extended triangle by default. - Peter Luschny, Aug 24 2019

Examples

			Triangle begins:
   n/k: 1,  2,  3,  4,  5,  6,  7,  8, ...
   1:   1;
   2:   0,  1;
   3:   0,  1,  1;
   4:   0,  1,  1,  1;
   5:   0,  2,  2,  1,  1;
   6:   0,  1,  2,  2,  1,  1;
   7:   0,  3,  4,  3,  2,  1,  1;
   8:   0,  2,  4,  4,  3,  2,  1,  1;
   9:   0,  3,  6,  6,  5,  3,  2,  1,  1;
  10:   0,  2,  6,  8,  6,  5,  3,  2,  1,  1;
  11:   0,  5, 10, 11, 10,  7,  5,  3,  2,  1,  1;
  12:   0,  2,  8, 12, 12, 10,  7,  5,  3,  2,  1,  1;
  ...
The partitions with their gcd value for n=8, k=2..5:
(1, 7)=1, (2, 6)=2, (3, 5)=1, (4, 4)=4, so T(8,2)=2.
(1, 1, 6)=1, (1, 2, 5)=1, (1, 3, 4)=1, (2, 2, 4)=2, (2, 3, 3)=1, so T(8,2)=4.
(1, 1, 1, 5)=1, (1, 1, 2, 4)=1, (1, 1, 3, 3)=1, (1, 2, 2, 3)=1, (2, 2, 2, 2)=2, so T(8,3)=4.
(1, 1, 1, 1, 4)=1, (1, 1, 1, 2, 3)=1, (1, 1, 2, 2, 2)=1, so T(8,4)=3.
(1, 1, 1, 1, 1, 3)=1, (1, 1, 1, 1, 2, 2)=1, so T(8,5)=2.
		

Crossrefs

Cf. A023022-A023030, A101391 (analog for compositions), A282749 (triangle of partitions into pairwise relatively prime parts).
Row sums = A000837. See also A051424.
For ordinary partition table see A008284.

Programs

  • Mathematica
    Table[Length@ Select[IntegerPartitions[n, {k}], GCD @@ # == 1 &], {n, 13}, {k, n}] // Flatten (* Michael De Vlieger, Mar 08 2017 *)
  • Sage
    # uses[DivisorTriangle from A327029, A008284]
    DivisorTriangle(moebius, A008284, 13) # Peter Luschny, Aug 24 2019

Formula

T(n, k) = Sum_{d|n} Moebius(d) * A008284(n/d, k) for n >= 1, T(0, 0) = 1. - Peter Luschny, Aug 24 2019

Extensions

Corrected a(30)-a(32) and more terms from Lars Blomberg, Mar 08 2017

A303282 Numbers whose prime indices have no common divisor other than 1 but are not pairwise coprime.

Original entry on oeis.org

18, 36, 42, 45, 50, 54, 72, 75, 78, 84, 90, 98, 99, 100, 105, 108, 114, 126, 130, 135, 144, 150, 153, 156, 162, 168, 174, 175, 180, 182, 195, 196, 198, 200, 207, 210, 216, 222, 225, 228, 230, 231, 234, 242, 245, 250, 252, 258, 260, 266, 270, 275, 279, 285, 288
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of integer partitions whose Heinz numbers belong to this sequence begins (221), (2211), (421), (322), (331), (2221), (22111), (332), (621), (4211), (3221), (441), (522), (3311), (432), (22211).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[400],!CoprimeQ@@primeMS[#]&&GCD@@primeMS[#]===1&]

A303708 Number of aperiodic factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 3, 1, 2, 2, 0, 1, 3, 1, 3, 2, 2, 1, 4, 0, 2, 0, 3, 1, 5, 1, 0, 2, 2, 2, 3, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 0, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 0, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 0, 2, 1, 9, 2, 2, 2, 4, 1, 9, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

An aperiodic factorization of n is a finite multiset of positive integers greater than 1 whose product is n and whose multiplicities are relatively prime.
The positions of zeros in this sequence are the prime powers A000961.

Examples

			The a(144) = 8 aperiodic factorizations are (2*2*2*3*6), (2*2*2*18), (2*2*3*12), (2*3*24), (2*6*12), (2*72), (3*48) and (6*24). Missing from this list are (12*12), (2*2*6*6) and (2*2*2*2*3*3).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=Or[n===1,GCD@@FactorInteger[n][[All,2]]===1];
    facsr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsr[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[Select[facsr[n],GCD@@Length/@Split[#]===1&]],{n,100}]

Formula

a(n) = Sum_{d in A007916, d|A052409(n)} mu(d) * A303707(n^(1/d)).

A304712 Number of integer partitions of n whose parts are all equal or whose distinct parts are pairwise coprime.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 19, 25, 32, 43, 54, 70, 86, 105, 130, 162, 196, 240, 286, 339, 405, 485, 573, 674, 790, 922, 1072, 1252, 1456, 1685, 1939, 2226, 2557, 2923, 3349, 3822, 4347, 4931, 5593, 6335, 7170, 8092, 9105, 10233, 11495, 12903, 14458, 16169, 18063
Offset: 0

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Two parts are coprime if they have no common divisor greater than 1.

Examples

			The a(6) = 10 partitions whose parts are all equal or whose distinct parts are pairwise coprime are (6), (51), (411), (33), (321), (3111), (222), (2211), (21111), (111111).
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i, s) `if`(n=0, 1, `if`(i<1, 0,
          b(n, i, select(x-> x<=i, s))))
        end:
    b:= proc(n, i, s) option remember; g(n, i-1, s)+(f->
         `if`(f intersect s={}, add(g(n-i*j, i-1, s union f)
            , j=1..n/i), 0))(numtheory[factorset](i))
        end:
    a:= n-> g(n$2, {}):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 17 2018
  • Mathematica
    Table[Select[IntegerPartitions[n],Or[SameQ@@#,CoprimeQ@@Union[#]]&]//Length,{n,20}]
    (* Second program: *)
    g[n_, i_, s_] := If[n == 0, 1, If[i < 1, 0, b[n, i, Select[s, # <= i &]]]];
    b[n_, i_, s_] := b[n, i, s] = g[n, i - 1, s] + Function[f,
         If[f ~Intersection~ s == {}, Sum[g[n - i*j, i - 1, s ~Union~ f],
         {j, 1, n/i}], 0]][FactorInteger[i][[All, 1]]];
    a[n_] := g[n, n, {}];
    a /@ Range[0, 60] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A305732 Heinz numbers of reducible integer partitions. Numbers n > 1 that are prime or whose prime indices are relatively prime and such that A181819(n) is already in the sequence.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). A prime index of n is a number m such that prime(m) divides n. A multiset m whose distinct elements are m_1, m_2, ..., m_k with multiplicities y_1, y_2, ..., y_k is reducible if either m is of size 1 or gcd(m_1,...,m_k) = 1 and the multiset {y_1,...,y_k} is also reducible.

Examples

			60 has relatively prime prime indices {1,1,2,3} with multiplicities {1,1,2} corresponding to A181819(90) = 12. 12 has relatively prime prime indices {1,1,2} with multiplicities {1,2} corresponding to A181819(12) = 6. 6 has relatively prime prime indices {1,2} with multiplicities {1,1} corresponding to A181819(6) = 4. 4 has relatively prime prime indices {1,1} with multiplicities {2} corresponding to A181819(4) = 3. 3 is prime, so we conclude that 60 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    rdzQ[n_]:=And[n>1,Or[PrimeQ[n],And[rdzQ[Times@@Prime/@FactorInteger[n][[All,2]]],GCD@@PrimePi/@FactorInteger[n][[All,1]]==1]]];
    Select[Range[50],rdzQ]

A317085 Number of integer partitions of n whose sequence of multiplicities is a palindrome.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 8, 6, 11, 12, 18, 16, 31, 25, 40, 47, 60, 58, 92, 85, 125, 135, 165, 173, 248, 246, 310, 351, 435, 450, 602, 608, 766, 846, 997, 1098, 1382, 1421, 1713, 1912, 2272, 2413, 2958, 3118, 3732, 4135, 4718, 5127, 6170, 6550, 7638, 8396, 9667, 10433
Offset: 0

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Examples

			The a(10) = 18 partitions:
(ten),
(91), (82), (73), (64), (55),
(721), (631), (541), (532),
(5221), (4411), (4321), (3322),
(33211), (32221), (22222),
(1111111111).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length/@Split[#]==Reverse[Length/@Split[#]]&]],{n,30}]
  • Python
    from sympy.utilities.iterables import partitions
    def A317085(n):
        c = 1
        for d in partitions(n,m=n*2//3):
            l = len(d)
            if l > 0:
                k = sorted(d.keys())
                for i in range(l//2):
                    if d[k[i]] != d[k[l-i-1]]:
                        break
                else:
                    c += 1
        return c # Chai Wah Wu, Jun 22 2020

A317088 Number of normal integer partitions of n whose multiset of multiplicities is also normal.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 3, 4, 1, 4, 4, 5, 4, 6, 7, 9, 10, 13, 13, 15, 15, 17, 23, 22, 29, 29, 34, 36, 47, 45, 59, 60, 72, 77, 93, 95, 112, 121, 129, 149, 169, 176, 202, 228, 247, 268, 305, 334, 372, 405, 452, 496, 544, 594, 663, 724, 802
Offset: 0

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers.

Examples

			The a(18) = 7 integer partitions are (543321), (5432211), (4433211), (4432221), (44322111), (4333221), (43322211).
		

Crossrefs

Programs

  • Mathematica
    normalQ[m_]:=Union[m]==Range[Max[m]];
    Table[Length[Select[IntegerPartitions[n],And[normalQ[#],normalQ[Length/@Split[#]]]&]],{n,30}]
  • Python
    from sympy.utilities.iterables import partitions
    from sympy import integer_nthroot
    def A317088(n):
        if n == 0:
            return 1
        c = 0
        for d in partitions(n,k=integer_nthroot(2*n,2)[0]):
            l = len(d)
            if l > 0 and l == max(d):
                v = set(d.values())
                if len(v) == max(v):
                    c += 1
        return c # Chai Wah Wu, Jun 23 2020

A319055 Maximum product of an integer partition of n with relatively prime parts.

Original entry on oeis.org

1, 1, 2, 3, 6, 6, 12, 18, 24, 36, 54, 72, 108, 162, 216, 324, 486, 648, 972, 1458, 1944, 2916, 4374, 5832, 8748, 13122, 17496, 26244, 39366, 52488, 78732, 118098, 157464, 236196, 354294, 472392, 708588, 1062882, 1417176, 2125764, 3188646, 4251528, 6377292
Offset: 1

Views

Author

Gus Wiseman, Sep 09 2018

Keywords

Comments

After a(7), this appears to be the same as A319054.

Crossrefs

Programs

  • Mathematica
    Table[Max[Times@@@Select[IntegerPartitions[n],GCD@@#==1&]],{n,20}]
Previous Showing 71-80 of 265 results. Next