A186418
a(n) = binomial(2*n,n)^4/(n + 1)^2.
Original entry on oeis.org
1, 4, 144, 10000, 960400, 112021056, 14876193024, 2167749739584, 338710896810000, 55880440123393600, 9629613008027474176, 1719721549507980904704, 316402760115623198128384, 59700436261400947600000000
Offset: 0
-
Table[Binomial[2n,n]^4/(n+1)^2,{n,0,40}]
-
makelist(binomial(2*n,n)^4/(n+1)^2,n,0,40);
A186266
Expansion of 2F1( 1/2, 3/2; 4; 16*x ).
Original entry on oeis.org
1, 3, 18, 140, 1260, 12474, 132132, 1472328, 17065620, 204155380, 2506399896, 31443925968, 401783498480, 5215458874500, 68633685693000, 914099013896400, 12304253831789700, 167193096184907100, 2291164651422801000, 31637804708163654000, 439903041116118980400
Offset: 0
-
CoefficientList[
Series[HypergeometricPFQ[{1/2, 3/2}, {4}, 16*x], {x, 0, 20}], x]
Table[3 CatalanNumber[n] CatalanNumber[n+1] * (n+1) / (n+3), {n, 0, 20}] (* Indranil Ghosh, Mar 05 2017 *)
-
c(n) = binomial(2*n,n) / (n+1);
a(n) = 3 * c(n) * c(n+1) *(n+1) / (n+3); \\ Indranil Ghosh, Mar 05 2017
-
import math
f=math.factorial
def C(n,r): return f(n) / f(r) / f(n-r)
def Catalan(n): return C(2*n, n) / (n+1)
def A186266(n): return 3 * Catalan(n) * Catalan(n+1) * (n+1) / (n+3) # Indranil Ghosh, Mar 05 2017
A186419
a(n) = binomial(2*n,n)^4/(n + 1).
Original entry on oeis.org
1, 8, 432, 40000, 4802000, 672126336, 104133351168, 17341997916672, 3048398071290000, 558804401233936000, 105925743088302215936, 20636658594095770856448, 4113235881503101575668992, 835806107659613266400000000, 172665358079973774114240000000
Offset: 0
-
Table[Binomial[2n,n]^4/(n+1),{n,0,40}]
-
makelist(binomial(2*n,n)^4/(n+1),n,0,12);
A275607
a(n) = 2*12^n*Gamma(n+1/2)*(n+1)/(sqrt(Pi)*Gamma(n+3)).
Original entry on oeis.org
1, 4, 27, 216, 1890, 17496, 168399, 1667952, 16888014, 173997720, 1818276174, 19225409616, 205299909828, 2210922105840, 23984556773175, 261854925711840, 2874948871877910, 31722346066169880, 351589335566716170, 3912422681494285200, 43694647856506630620, 489597172255515289680
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..925
- Simeon T. Stefanov, Counting fixed points free vector fields on B^2, arXiv:1807.03714 [math.GT], 2018.
- K. Szymanski, B. Collins, T. Szarek and K. Zyczkowski, Convex set of quantum states with positive partial transpose analysed by hit and run algorithm, arXiv:1611.01194 [quant-ph], 2016.
-
a := n -> (2^(2*n+1)*3^n*(n+1)*GAMMA(n+1/2))/(sqrt(Pi)*GAMMA(n+3)):
seq(a(n), n=0..21); # Peter Luschny, Nov 14 2016
-
g[z_] := E^z (BesselI[0,z] - (1-1/z) BesselI[1,z])
Table[CoefficientList[2/3 Series[g[6z], {z,0,21}],z]] Range[0, 21]! //Flatten (* Peter Luschny, Nov 14 2016 *)
Table[ 2*12^n*(n + 1)*Gamma[n + 1/2]/(Sqrt[Pi]*Gamma[n + 3]), {n,0,100}] (* G. C. Greubel, Jan 13 2017 *)
-
a(n)=2*12^n*gamma(n+1/2)*(n+1)\/(sqrt(Pi)*(n+2)!) \\ Charles R Greathouse IV, Nov 14 2016
-
a(n)=2*3^n*binomial(2*n+1,n-1)*(n+1)/(2*n+1)/n \\ Charles R Greathouse IV, Nov 14 2016
A379100
Triangle read by rows: T(n, k) = binomial(2*k, k) * binomial(2*n, n) / (n + 1).
Original entry on oeis.org
1, 1, 2, 2, 4, 12, 5, 10, 30, 100, 14, 28, 84, 280, 980, 42, 84, 252, 840, 2940, 10584, 132, 264, 792, 2640, 9240, 33264, 121968, 429, 858, 2574, 8580, 30030, 108108, 396396, 1472328, 1430, 2860, 8580, 28600, 100100, 360360, 1321320, 4907760, 18404100
Offset: 0
[0] 1;
[1] 1, 2;
[2] 2, 4, 12;
[3] 5, 10, 30, 100;
[4] 14, 28, 84, 280, 980;
[5] 42, 84, 252, 840, 2940, 10584;
[6] 132, 264, 792, 2640, 9240, 33264, 121968;
[7] 429, 858, 2574, 8580, 30030, 108108, 396396, 1472328;
-
T := (n, k) -> binomial(2*k, k) * binomial(2*n, n) / (n + 1):
seq(seq(T(n, k), k = 0..n), n = 0..8);
A189942
Table, read by rows, of the number of quivers of type Ã_(n-1) according to the parameter k (n >= 2, 1 <= k <= [n/2]).
Original entry on oeis.org
1, 2, 5, 4, 14, 12, 42, 36, 22, 132, 108, 100, 429, 349, 315, 172, 1430, 1144, 1028, 980, 4862, 3868, 3432, 3240, 1651, 16796, 13260, 11700, 10920, 10584, 58786, 46210, 40520, 37556, 36036, 18028, 208012, 162792, 142120, 130900, 124740, 121968
Offset: 2
The table begins
===================================
n | r=1 | r=2 | r=3 | r=4 | r=5 |
===================================
n=2 1
n=3 2
n=4 5 4
n=5 14 12
n=6 42 36 22
n=7 132 108 100
n=8 429 349 315 172
n=9 1430 1144 1028 980
n=10 4862 3868 3432 3240 1651
===================================
- Francois Bergeron, Gilbert Labelle and Pierre Leroux, Combinatorial species and tree-like structures, Encyclopedia of Mathematics and its Applications, vol. 67, Cambridge University Press, Cambridge, 1998, Translated from the 1994 French original by Margaret Readdy, With a foreword by Gian-Carlo Rota.
- Ibrahim Assem, Thomas Brustle, Gabrielle Charbonneau-Jodoin and Pierre-Guy Plamondon, Gentle algebras arising from surface triangulations, Algebra & Number Theory 4 (2010), no. 2, 201-229; arXiv:0903.3347 [math.RT], 2009.
- Janine Bastian, Thomas Prellberg, Martin Rubey and Christian Stump, Counting the number of elements in the mutation classes of Ã_n-quivers, arXiv:0906.0487 [math.CO], 2009-2011.
- Janine Bastian, Mutation classes of Ã_n-quivers and derived equivalence classification of cluster tilted algebras of type Ã_n, Algebra Number Theory 5 (2011), no. 5, 567-594; arXiv:0901.1515 [math.RT], 2009-2012.
- Hermund André Torkildsen, A geometric realization of the m-cluster category of type Ã, arXiv 1208.2138 [math.RT], 2012. - From _N. J. A. Sloane_, Jan 31 2013
-
a[r_, r_] := 1/2 (Binomial[2 r, r]/2 + Sum[EulerPhi[k]/(4 r) Binomial[2 r/k, r/k]^2, {k, Divisors@r}]);
a[r_, s_] := 1/2 Sum[EulerPhi[k]/(r + s) Binomial[2 r/k, r/k] Binomial[2 s/k, s/k], {k, Intersection[Divisors@r, Divisors@s]}];
Table[a[r, n - r], {n, 2, 10}, {r, n/2}] // TableForm
(* Andrey Zabolotskiy, Jan 19 2022 *)
A318614
Scaled g.f. S(u) = Sum_{n>0} a(n)*16*(u/16)^n satisfies T(u) = d/du S(u), with T(u) as defined by A318417; sequence gives a(n).
Original entry on oeis.org
1, 6, 76, 1260, 24276, 515592, 11721072, 280020312, 6945369860, 177358000248, 4635276570288, 123449340098448, 3339525750984528, 91535631253610400, 2537277723600799680, 71015600640006437040, 2004523477053308685540, 57003431104378084982040
Offset: 1
Singular Value: S(1/2) = 1/sqrt(2).
N=4, h=1/sqrt(2) Quantization: S(u) = (n+1/2)*h/N.
n | u
==================================================
0 | 0.08544689553344134756293807606337...
1 | 0.23840989875904155311088418238272...
2 | 0.36638282702449450473835851051425...
3 | 0.46595506694324457665483887176081...
- E. Heller, The Semiclassical Way to Dynamics and Spectroscopy, Princeton University Press, 2018, page 204.
-
a:=[1,6];; for n in [3..20] do a[n]:=(1/(n*(n-1)^2))*(12*(n-1)*(2*n-3)^2*a[n-1]-(128*(n-2)*(2*n-5)*(2*n-3)*a[n-2])); od; a; # Muniru A Asiru, Sep 24 2018
-
RecurrenceTable[{(n-1)^2*n*a[n] - 12*(n-1)*(2*n-3)^2*a[n-1] + 128*(n-2)*(2*n-5)*(2*n-3)*a[n-2] == 0, a[1] == 1, a[2] == 6}, a, {n, 1, 1000}]
Comments