cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A186418 a(n) = binomial(2*n,n)^4/(n + 1)^2.

Original entry on oeis.org

1, 4, 144, 10000, 960400, 112021056, 14876193024, 2167749739584, 338710896810000, 55880440123393600, 9629613008027474176, 1719721549507980904704, 316402760115623198128384, 59700436261400947600000000
Offset: 0

Views

Author

Emanuele Munarini, Feb 21 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2n,n]^4/(n+1)^2,{n,0,40}]
  • Maxima
    makelist(binomial(2*n,n)^4/(n+1)^2,n,0,40);

Formula

G.f.: 4F3({1/2,1/2,1/2,1/2},{1,2,2},256x), where 4F3 is a hypergeometric series.

A186266 Expansion of 2F1( 1/2, 3/2; 4; 16*x ).

Original entry on oeis.org

1, 3, 18, 140, 1260, 12474, 132132, 1472328, 17065620, 204155380, 2506399896, 31443925968, 401783498480, 5215458874500, 68633685693000, 914099013896400, 12304253831789700, 167193096184907100, 2291164651422801000, 31637804708163654000, 439903041116118980400
Offset: 0

Views

Author

Olivier Gérard, Feb 16 2011

Keywords

Comments

Combinatorial interpretation welcome.
Could involve planar maps, lattice walks, and interpretations of Catalan numbers.

Crossrefs

Formula close to A000257, A000888, A172392.
Cf. A000108.

Programs

  • Mathematica
    CoefficientList[
    Series[HypergeometricPFQ[{1/2, 3/2}, {4}, 16*x], {x, 0, 20}], x]
    Table[3 CatalanNumber[n] CatalanNumber[n+1] * (n+1) / (n+3), {n, 0, 20}] (* Indranil Ghosh, Mar 05 2017 *)
  • PARI
    c(n) = binomial(2*n,n) / (n+1);
    a(n) = 3 * c(n) * c(n+1) *(n+1) / (n+3); \\ Indranil Ghosh, Mar 05 2017
    
  • Python
    import math
    f=math.factorial
    def C(n,r): return f(n) / f(r) / f(n-r)
    def Catalan(n): return C(2*n, n) / (n+1)
    def A186266(n): return 3 * Catalan(n) * Catalan(n+1) * (n+1) / (n+3) # Indranil Ghosh, Mar 05 2017

Formula

a(n) = 3*A000108(n)*A000108(n+1)*(n+1)/(n+3). - David Scambler, Aug 18 2012
D-finite with recurrence n*(n+3)*a(n) -4*(2*n-1)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Jun 17 2016

A186419 a(n) = binomial(2*n,n)^4/(n + 1).

Original entry on oeis.org

1, 8, 432, 40000, 4802000, 672126336, 104133351168, 17341997916672, 3048398071290000, 558804401233936000, 105925743088302215936, 20636658594095770856448, 4113235881503101575668992, 835806107659613266400000000, 172665358079973774114240000000
Offset: 0

Views

Author

Emanuele Munarini, Feb 21 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2n,n]^4/(n+1),{n,0,40}]
  • Maxima
    makelist(binomial(2*n,n)^4/(n+1),n,0,12);

Formula

G.f.: 4F3({1/2,1/2,1/2,1/2},{1,1,2},256x), where 4F3 is a hypergeometric series.

A275607 a(n) = 2*12^n*Gamma(n+1/2)*(n+1)/(sqrt(Pi)*Gamma(n+3)).

Original entry on oeis.org

1, 4, 27, 216, 1890, 17496, 168399, 1667952, 16888014, 173997720, 1818276174, 19225409616, 205299909828, 2210922105840, 23984556773175, 261854925711840, 2874948871877910, 31722346066169880, 351589335566716170, 3912422681494285200, 43694647856506630620, 489597172255515289680
Offset: 0

Views

Author

Karol A. Penson, Nov 14 2016

Keywords

Comments

In reference of K. Szymanski et al. the function g(x) from the Eq.(4.6) satisfies the equality g(x/4)/4 = W(x) where W(x) is the weight function of the integral representation, see below.

Crossrefs

Programs

  • Maple
    a := n -> (2^(2*n+1)*3^n*(n+1)*GAMMA(n+1/2))/(sqrt(Pi)*GAMMA(n+3)):
    seq(a(n), n=0..21); # Peter Luschny, Nov 14 2016
  • Mathematica
    g[z_] :=  E^z (BesselI[0,z] - (1-1/z) BesselI[1,z])
    Table[CoefficientList[2/3 Series[g[6z], {z,0,21}],z]] Range[0, 21]! //Flatten (* Peter Luschny, Nov 14 2016 *)
    Table[ 2*12^n*(n + 1)*Gamma[n + 1/2]/(Sqrt[Pi]*Gamma[n + 3]), {n,0,100}] (* G. C. Greubel, Jan 13 2017 *)
  • PARI
    a(n)=2*12^n*gamma(n+1/2)*(n+1)\/(sqrt(Pi)*(n+2)!) \\ Charles R Greathouse IV, Nov 14 2016
    
  • PARI
    a(n)=2*3^n*binomial(2*n+1,n-1)*(n+1)/(2*n+1)/n \\ Charles R Greathouse IV, Nov 14 2016

Formula

O.g.f: (1/54)*(1-(6*z+1)*sqrt(1-12*z))/z^2;
E.g.f.(in Maple notation): (1/9)*exp(6*z)*(6*z*(BesselI(0,6*z)-BesselI(1,6*z))+ BesselI(1,6*z))/z;
Recurrence: (-12*n^2-54*n-54)*a(n+1)+(n^2+6*n+8)*a(n+2)=0, n=0,1..., for the initial values a(0)=1, a(1)=4.
Integral representation as the n-th Hausdorff moment of the positive function W(x) on the segment x=(0,12), i.e., a(n) = Integral_{x=0..12} x^n*W(x) dx, where W(x) = (1/27)*sqrt(12-x)*(3+(1/2)*x)/(Pi*sqrt(x)). This representation is unique.
a(n) ~ 2^(2*n+1)*3^n/(sqrt(Pi)*n^(3/2)). - Ilya Gutkovskiy, Nov 14 2016
a(n) = 2*3^n*binomial(2n+1, n-1)*(n+1)/(2n^2+n). - Charles R Greathouse IV, Nov 14 2016

A379100 Triangle read by rows: T(n, k) = binomial(2*k, k) * binomial(2*n, n) / (n + 1).

Original entry on oeis.org

1, 1, 2, 2, 4, 12, 5, 10, 30, 100, 14, 28, 84, 280, 980, 42, 84, 252, 840, 2940, 10584, 132, 264, 792, 2640, 9240, 33264, 121968, 429, 858, 2574, 8580, 30030, 108108, 396396, 1472328, 1430, 2860, 8580, 28600, 100100, 360360, 1321320, 4907760, 18404100
Offset: 0

Views

Author

Peter Luschny, Dec 15 2024

Keywords

Examples

			  [0]   1;
  [1]   1,   2;
  [2]   2,   4,   12;
  [3]   5,  10,   30,  100;
  [4]  14,  28,   84,  280,   980;
  [5]  42,  84,  252,  840,  2940,  10584;
  [6] 132, 264,  792, 2640,  9240,  33264, 121968;
  [7] 429, 858, 2574, 8580, 30030, 108108, 396396, 1472328;
		

Crossrefs

Cf. A002894, A000888, A270577, A379099 (row sums).

Programs

  • Maple
    T := (n, k) -> binomial(2*k, k) * binomial(2*n, n) / (n + 1):
    seq(seq(T(n, k), k = 0..n), n = 0..8);

Formula

T(n, k) = ((2*k)! * (2*n)!) / ((k! * n!)^2 * (n+1)).

A189942 Table, read by rows, of the number of quivers of type Ã_(n-1) according to the parameter k (n >= 2, 1 <= k <= [n/2]).

Original entry on oeis.org

1, 2, 5, 4, 14, 12, 42, 36, 22, 132, 108, 100, 429, 349, 315, 172, 1430, 1144, 1028, 980, 4862, 3868, 3432, 3240, 1651, 16796, 13260, 11700, 10920, 10584, 58786, 46210, 40520, 37556, 36036, 18028, 208012, 162792, 142120, 130900, 124740, 121968
Offset: 2

Views

Author

Jonathan Vos Post, May 01 2011

Keywords

Comments

Table 1, p. 15 of Bastian.
There is a bijection with dissections of an annulus [Hermund André Torkildsen]. - N. J. A. Sloane, Jan 31 2013

Examples

			The table begins
===================================
n  |  r=1 | r=2 | r=3 | r=4 | r=5 |
===================================
n=2     1
n=3     2
n=4     5      4
n=5    14     12
n=6    42     36    22
n=7   132    108   100
n=8   429    349   315   172
n=9  1430   1144  1028   980
n=10 4862   3868  3432  3240  1651
===================================
		

References

  • Francois Bergeron, Gilbert Labelle and Pierre Leroux, Combinatorial species and tree-like structures, Encyclopedia of Mathematics and its Applications, vol. 67, Cambridge University Press, Cambridge, 1998, Translated from the 1994 French original by Margaret Readdy, With a foreword by Gian-Carlo Rota.

Crossrefs

Cf. A000108 (r=1), A000888 (n=2r+1).

Programs

  • Mathematica
    a[r_, r_] := 1/2 (Binomial[2 r, r]/2 + Sum[EulerPhi[k]/(4 r) Binomial[2 r/k, r/k]^2, {k, Divisors@r}]);
    a[r_, s_] := 1/2 Sum[EulerPhi[k]/(r + s) Binomial[2 r/k, r/k] Binomial[2 s/k, s/k], {k, Intersection[Divisors@r, Divisors@s]}];
    Table[a[r, n - r], {n, 2, 10}, {r, n/2}] // TableForm
    (* Andrey Zabolotskiy, Jan 19 2022 *)

Extensions

Rows 11-13 added by Andrey Zabolotskiy, Jan 19 2022

A318614 Scaled g.f. S(u) = Sum_{n>0} a(n)*16*(u/16)^n satisfies T(u) = d/du S(u), with T(u) as defined by A318417; sequence gives a(n).

Original entry on oeis.org

1, 6, 76, 1260, 24276, 515592, 11721072, 280020312, 6945369860, 177358000248, 4635276570288, 123449340098448, 3339525750984528, 91535631253610400, 2537277723600799680, 71015600640006437040, 2004523477053308685540, 57003431104378084982040
Offset: 1

Views

Author

Bradley Klee, Aug 30 2018

Keywords

Comments

Area interior to the central loop of u = 2*H = x^2 + y^2 - (1/2)*(x^4 + y^4) equals to Pi*S(u), when u in [0,1/2].

Examples

			Singular Value: S(1/2) = 1/sqrt(2).
N=4, h=1/sqrt(2) Quantization: S(u) = (n+1/2)*h/N.
  n  |                  u
==================================================
  0  |  0.08544689553344134756293807606337...
  1  |  0.23840989875904155311088418238272...
  2  |  0.36638282702449450473835851051425...
  3  |  0.46595506694324457665483887176081...
		

References

  • E. Heller, The Semiclassical Way to Dynamics and Spectroscopy, Princeton University Press, 2018, page 204.

Crossrefs

Programs

  • GAP
    a:=[1,6];; for n in [3..20] do a[n]:=(1/(n*(n-1)^2))*(12*(n-1)*(2*n-3)^2*a[n-1]-(128*(n-2)*(2*n-5)*(2*n-3)*a[n-2])); od; a; # Muniru A Asiru, Sep 24 2018
  • Mathematica
    RecurrenceTable[{(n-1)^2*n*a[n] - 12*(n-1)*(2*n-3)^2*a[n-1] + 128*(n-2)*(2*n-5)*(2*n-3)*a[n-2] == 0, a[1] == 1, a[2] == 6}, a, {n, 1, 1000}]

Formula

(n-1)^2*n*a(n) - 12*(n-1)*(2*n-3)^2*a(n-1) + 128*(n-2)*(2*n-5)*(2*n-3)*a(n-2) == 0.
a(n) = A000108(n-1)*A098410(n-1).
Previous Showing 11-17 of 17 results.