cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 56 results. Next

A319662 2-rank of the class group of Q(sqrt(-k)), k squarefree.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 2, 0, 2, 1, 1, 1, 1, 1, 1, 2, 0, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 2, 2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 0, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 0, 3, 1, 0, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 0, 2, 2, 0, 2, 1, 1, 2, 0, 2
Offset: 1

Views

Author

Jianing Song, Sep 25 2018

Keywords

Comments

The p-rank of a finite abelian group G is equal to log_p(#{x belongs to G : x^p = 1}) where p is a prime number. In this case, G is the class group of Q(sqrt(-k)), and #{x belongs to G : x^p = 1} is the number of genera of Q(sqrt(-k)) (cf. A003643).

Crossrefs

Real discriminant case: A317992.

Programs

  • Mathematica
    PrimeNu[#*If[Mod[-#, 4]>1, 4, 1]] - 1& /@ Select[Range[200], SquareFreeQ] (* Jean-François Alcover, Aug 02 2019 *)
  • PARI
    for(n=1, 200, if(issquarefree(n), print1(omega(n*if((-n)%4>1, 4, 1)) - 1, ", ")))
    
  • Sage
    def A319662_list(len):
        L = []
        for n in (1..len):
            if is_squarefree(n):
                if (-n) % 4 > 1: n <<= 2
                L.append(sloane.A001221(n) - 1)
        return L
    print(A319662_list(141)) # Peter Luschny, Oct 15 2018

Formula

a(n) = log_2(A003643(n)) = omega(A005117(n)) - 1, where omega(k) is the number of distinct prime divisors of k.

A053373 Write fundamental unit for real quadratic field of discriminant n as x + y*omega; sequence gives values of y for n == 1 (mod 4).

Original entry on oeis.org

1, 1, 2, 1, 1, 8, 2, 10, 1, 40, 5, 2, 3, 250, 1, 1, 106, 3, 1138, 2, 8, 25, 146, 2968, 15, 298, 16, 2, 5, 17, 1856, 1, 1, 9384, 97, 10, 253970, 2, 72664, 3, 6440, 5, 521904, 1, 1, 3034, 5, 9148450, 1084152, 117, 2, 746, 10, 88, 157, 126890, 1, 1, 1311, 56, 287
Offset: 1

Views

Author

N. J. A. Sloane, Jan 06 2000

Keywords

Comments

Entries are indexed by values of n from A039955.
Subsequence of A077058 excluding terms for which A077425(n) is not squarefree. - Max Alekseyev, Dec 12 2012

References

  • R. A. Mollin, Quadratics, CRC Press, 1996, Tables B1-B3.

Crossrefs

Programs

  • Mathematica
    2*NumberFieldFundamentalUnits[ Sqrt[#] ][[1, 2, 2]] & /@ Select[ Range[5, 309, 4], SquareFreeQ ]  (* Jean-François Alcover, Jul 09 2013 *)
  • PARI
    forstep(n=5,1000,4, if(!issquarefree(n),next); print1( 2*polcoeff(lift(bnfinit(x^2-n).fu[1]),1), ", " )) /* Max Alekseyev */

A106030 a(n) is the number of orbits under the action of GL_2[Z] on the primitive binary quadratic forms of discriminant D, where D=m if m=1 (mod 4), D=4*m otherwise and m>1 is the n-th squarefree number.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 2, 1, 2, 4, 1, 2, 2, 2, 2, 2, 1, 4, 2, 2, 3, 4, 1, 2, 4, 1, 4, 2, 2, 2, 4, 1, 4, 2, 2, 2, 1, 2, 2, 4, 2, 2, 4, 2, 1, 2, 2, 4, 4, 3, 2, 2, 2, 4, 1, 4, 2, 2, 4, 1
Offset: 1

Views

Author

Steven Finch, May 05 2005

Keywords

Comments

A104888 is the same except it is under the action of SL_2[Z].

Examples

			m = 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, ...
with corresponding discriminant
D = 8, 12, 5, 24, 28, 40, 44, 13, 56, 60, 17, ....
		

Crossrefs

Cf. A104888.

A107996 Integers m congruent to 5 modulo 8 such that the minimal solution of the Pell equation x^2 - m*y^2 = +-4 has both x and y odd.

Original entry on oeis.org

5, 13, 21, 29, 45, 53, 61, 69, 77, 85, 93, 109, 117, 125, 133, 149, 157, 165, 173, 181, 205, 213, 221, 229, 237, 245, 253, 261, 277, 285, 293, 301, 309, 317, 341, 357, 365, 397, 413, 421, 429, 437, 445, 453, 461, 469, 477, 493, 501, 509, 517, 525, 533, 541
Offset: 1

Views

Author

Steven Finch, Jun 13 2005

Keywords

Comments

From Wolfdieter Lang, Oct 30 2015: (Start)
These numbers m are the members of A079896 that have two conjugacy classes of proper solutions (and one of improper solutions) for the Pell equation x^2 - m*y^2 = +4. E.g., m = 5 has the proper positive fundamental solutions (3,1) and (7,3) obtained from (3,-1) (and the improper positive fundamental solution (18,8) = 2*(9,4) obtained from (2,0)).
For these numbers m one has therefore two conjugacy classes of improper solutions, and, in addition, the improper ambiguous class with member (4, 0) for the equation X^2 - m*Y^2 = +16.
Note that also even m may have solutions with both x and y odd, e.g., m = 12 with minimal positive solution (x, y) = (4, 1) for the +4 equation. The +-4 in the name means +4 or -4 (inclusive).
(End)

Crossrefs

Cf. A079896.

A107999 Integers m congruent to 5 modulo 8 such that the minimal solution of the Pell equation x^2 - m*y^2 = +-4 has both x and y even.

Original entry on oeis.org

37, 101, 141, 189, 197, 269, 325, 333, 349, 373, 381, 389, 405, 485, 557, 573, 677, 701, 709, 757, 781, 813, 829, 877, 885, 901, 909, 925, 933, 973, 997, 1053, 1149, 1157, 1173, 1213, 1269, 1293, 1301, 1325, 1389, 1405, 1421, 1445, 1485, 1605, 1613, 1701, 1717
Offset: 1

Views

Author

Steven Finch, Jun 13 2005

Keywords

References

  • C. F. Gauss, Disquisitiones Arithmeticae, Yale Univ. Press, 1966, section 256 VI, pp. 276-277.

Crossrefs

Extensions

More terms from Jinyuan Wang, Sep 08 2021

A108160 Squarefree integers m congruent to 5 modulo 8 such that the minimal solution of the Pell equation x^2 - m*y^2 = +-4 has both x and y even.

Original entry on oeis.org

37, 101, 141, 197, 269, 349, 373, 381, 389, 485, 557, 573, 677, 701, 709, 757, 781, 813, 829, 877, 885, 901, 933, 973, 997, 1149, 1157, 1173, 1213, 1293, 1301, 1389, 1405, 1605, 1613, 1717, 1757, 1765, 1861, 1885, 1893, 1901, 1909, 1949, 1973, 2069, 2077, 2093
Offset: 1

Views

Author

Steven Finch, Jun 13 2005

Keywords

References

  • C. F. Gauss, Disquisitiones Arithmeticae, Yale Univ. Press, 1966, section 256 VI, pp. 276-277.

Crossrefs

Extensions

More terms from Jinyuan Wang, Sep 08 2021

A175640 Decimal expansion of Product_{p = prime} (1 +(3*p^2-1)/((p^2-1)*p*(p+1)) ).

Original entry on oeis.org

2, 5, 9, 6, 5, 3, 6, 2, 9, 0, 4, 5, 0, 5, 4, 2, 0, 7, 3, 6, 3, 2, 7, 4, 0, 6, 5, 6, 6, 6, 9, 5, 1, 6, 1, 4, 2, 3, 7, 3, 9, 4, 6, 3, 0, 5, 2, 3, 4, 5, 0, 1, 4, 6, 2, 3, 6, 1, 5, 3, 6, 4, 9, 8, 1, 0, 6, 7, 5, 4, 8, 2, 4, 5, 7, 8, 7, 6, 0, 9, 3, 5, 2, 1, 9, 3, 7, 1, 2, 2, 2, 8, 7, 0, 2, 8, 6, 4, 3, 1, 4, 2, 8, 7, 4
Offset: 1

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

Named Barban's constant after the Soviet mathematician Mark Borisovich Barban (1935-1968). - Amiram Eldar, Mar 18 2021

Examples

			2.596536290450542073632740...
		

Crossrefs

Programs

  • Maple
    read("transforms") : efact := 1+(3*p^2-1)/(p^2-1)/p/(p+1) ; Digits := 130 : tm := 380 : subs (p=1/x,1/efact) ; taylor(%,x=0,tm) : L := [seq(coeftayl(%,x=0,i),i=1..tm-1)] : Le := EULERi(L) : x := 1.0 :
    for i from 2 to nops(Le) do x := x/evalf(Zeta(i))^op(i,Le) ; x := evalf(x) ; print(x) ; end do:
  • Mathematica
    digits = 50; $MaxExtraPrecision = 5 digits; s = Log[(1 + (3*p^2 - 1)/((p^2 - 1)*p*(p + 1)))] + O[p, Infinity]^(12 digits) // Normal; B = Exp[s /. Power[p, k_] -> PrimeZetaP[-k]]; RealDigits[B, 10, digits][[1]] (* Jean-François Alcover, Jul 24 2017 *)
  • PARI
    prodeulerrat(1 +(3*p^2-1)/((p^2-1)*p*(p+1))) \\ Amiram Eldar, Mar 18 2021

Formula

Equals (29/18)*(61/48)*(397/360)*(1417/1344)*... inserting p = 2, 3, 5, 7, ... into the factor.
Equals Sum_{n>=1} A000005(n^2)*A000010(n)/n^3. - Richard R. Forberg, May 28 2023

Extensions

More digits from Jean-François Alcover, Jul 24 2017
More digits from Vaclav Kotesovec, Jan 13 2021

A265643 a(n) = +-1 == ((p - 1)/2)! (mod p), where p is the n-th prime number == 3 (mod 4).

Original entry on oeis.org

1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1
Offset: 1

Views

Author

Carlo Sanna, Dec 11 2015

Keywords

Comments

By Wilson's theorem, ((p - 1)/2)!^2 == (-1)^((p + 1)/2) (mod p) for each prime number p. Hence, if p == 3 (mod 4), then ((p - 1)/2)! == +-1 (mod p).
Michele Elia proved that a(n) = (-1)^((1 + h(-p)) / 2) for n > 1, where p is the n-th prime number == 3 (mod 4), and h(-p) is the class number of the quadratic field Q(sqrt(-p)).
Mordell (1961) proved the same result 52 years earlier in a 2-page note in the Monthly. - Jonathan Sondow, Apr 09 2017

Examples

			The second prime number == 3 (mod 4) is 7. Since ((7 - 1)/2)! = 3! = 6 == -1 (mod 7), it follows that a(2) = -1.
		

Crossrefs

Programs

  • Maple
    map(p -> if isprime(p) then mods(((p-1)/2)!, p) fi, [seq(i,i=3..10000, 4)]); # Robert Israel, Dec 11 2015
  • Mathematica
    Function[p, Mod[((p-1)/2)!, p, -1]] /@ Select[Range[3, 2003, 4], PrimeQ] (* Jean-François Alcover, Feb 27 2016 *)

A053371 Write fundamental unit for real quadratic field of discriminant n as x + y*omega; sequence gives values of x for n == 2 mod 4.

Original entry on oeis.org

1, 5, 3, 15, 197, 5, 11, 35, 37, 13, 24335, 99, 63, 65, 251, 43, 53, 9, 10405, 2143295, 101, 4005, 21, 1025, 306917, 11, 57, 145925, 47, 143, 145, 21295, 7743, 1700902565, 13, 1451, 1601, 27, 7501, 52021, 195, 3141, 59535, 29
Offset: 0

Views

Author

N. J. A. Sloane, Jan 06 2000

Keywords

Comments

Entries are indexed by values of n from A039956.

References

  • R. A. Mollin, Quadratics, CRC Press, 1996, Tables B1-B3.

Crossrefs

Programs

  • Mathematica
    NumberFieldFundamentalUnits[ Sqrt[#] ][[1, 2, 1]] & /@ Select[Range[2, 210, 2], SquareFreeQ] (* Jean-François Alcover, Jul 09 2013 *)

A053372 Write fundamental unit for real quadratic field of discriminant n as x + y*omega; sequence gives values of x for n == 3 mod 4.

Original entry on oeis.org

2, 8, 10, 4, 170, 24, 1520, 6, 25, 3482, 48, 50, 89, 530, 48842, 3480, 80, 82, 28, 1574, 39, 227528, 962, 295, 1126, 120, 122, 4730624, 10610, 77563250, 12, 1728148040, 249, 1324, 64080026, 168, 4190210, 487, 1682, 8994000, 14
Offset: 0

Views

Author

N. J. A. Sloane, Jan 06 2000

Keywords

Comments

Entries are indexed by values of n from A039957.

References

  • R. A. Mollin, Quadratics, CRC Press, 1996, Tables B1-B3.

Crossrefs

Programs

  • Mathematica
    NumberFieldFundamentalUnits[ Sqrt[#] ][[1, 2, 1]] & /@ Select[Range[3, 195, 4], SquareFreeQ ] (* Jean-François Alcover, Jul 09 2013 *)
Previous Showing 41-50 of 56 results. Next